使用onnx对pytorch模型进行部署

简介: 使用onnx对pytorch模型进行部署

3.png

1.onnx runtime安装

conda activate env_name # env_name换成环境名称
# 安装onnx
pip install onnx 
# 安装onnx runtime
pip install onnxruntime # 使用CPU进行推理
# pip install onnxruntime-gpu # 使用GPU进行推理

2.导出模型

# 转换的onnx格式的名称,文件后缀需为.onnx
onnx_file_name = "xxxxxx.onnx"
# 我们需要转换的模型,将torch_model设置为自己的模型
model = torch_model
# 加载权重,将model.pth转换为自己的模型权重
# 如果模型的权重是使用多卡训练出来,我们需要去除权重中多的module. 具体操作可以见5.4节
model = model.load_state_dict(torch.load("model.pth"))
# 导出模型前,必须调用model.eval()或者model.train(False)
model.eval()
# dummy_input就是一个输入的实例,仅提供输入shape、type等信息 
batch_size = 1 # 随机的取值,当设置dynamic_axes后影响不大
dummy_input = torch.randn(batch_size, 1, 224, 224, requires_grad=True) 
# 这组输入对应的模型输出
output = model(dummy_input)
# 导出模型
torch.onnx.export(model,        # 模型的名称
                  dummy_input,   # 一组实例化输入
                  onnx_file_name,   # 文件保存路径/名称
                  export_params=True,        #  如果指定为True或默认, 参数也会被导出. 如果你要导出一个没训练过的就设为 False.
                  opset_version=10,          # ONNX 算子集的版本,当前已更新到15
                  do_constant_folding=True,  # 是否执行常量折叠优化
                  input_names = ['input'],   # 输入模型的张量的名称
                  output_names = ['output'], # 输出模型的张量的名称
                  # dynamic_axes将batch_size的维度指定为动态,
                  # 后续进行推理的数据可以与导出的dummy_input的batch_size不同
                  dynamic_axes={'input' : {0 : 'batch_size'},    
                                'output' : {0 : 'batch_size'}})

3.模型校验

# 我们可以使用异常处理的方法进行检验
try:
    # 当我们的模型不可用时,将会报出异常
    onnx.checker.check_model(self.onnx_model)
except onnx.checker.ValidationError as e:
    print("The model is invalid: %s"%e)
else:
    # 模型可用时,将不会报出异常,并会输出“The model is valid!”
    print("The model is valid!")

4.模型可视化

Netron下载网址:github.com/lutzroeder/…

5.使用ONNX Runtime进行推理;使用ONNX Runtime运行一下转化后的模型,看一下推理后的结果。

import onnxruntime
# 需要进行推理的onnx模型文件名称
onnx_file_name = "xxxxxx.onnx"

# onnxruntime.InferenceSession用于获取一个 ONNX Runtime 推理器
ort_session = onnxruntime.InferenceSession(onnx_file_name)  

# 构建字典的输入数据,字典的key需要与我们构建onnx模型时的input_names相同
# 输入的input_img 也需要改变为ndarray格式
ort_inputs = {'input': input_img} 
# 我们更建议使用下面这种方法,因为避免了手动输入key
# ort_inputs = {ort_session.get_inputs()[0].name:input_img}

# run是进行模型的推理,第一个参数为输出张量名的列表,一般情况可以设置为None
# 第二个参数为构建的输入值的字典
# 由于返回的结果被列表嵌套,因此我们需要进行[0]的索引
ort_output = ort_session.run(None,ort_inputs)[0]
# output = {ort_session.get_outputs()[0].name}
# ort_output = ort_session.run([output], ort_inputs)[0]
相关文章
|
机器学习/深度学习 缓存 PyTorch
PyTorch 2.0 推理速度测试:与 TensorRT 、ONNX Runtime 进行对比
PyTorch 2.0 于 2022 年 12 月上旬在 NeurIPS 2022 上发布,它新增的 torch.compile 组件引起了广泛关注,因为该组件声称比 PyTorch 的先前版本带来更大的计算速度提升。
849 0
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
深度学习领域中pytorch、onnx和ncnn的关系
PyTorch、ONNX 和 NCNN 是深度学习领域中的三个重要工具或框架,它们在模型开发、转换和部署过程中扮演着不同但相互关联的角色。
154 12
|
3月前
|
存储 缓存 PyTorch
使用PyTorch从零构建Llama 3
本文将详细指导如何从零开始构建完整的Llama 3模型架构,并在自定义数据集上执行训练和推理。
62 1
|
5月前
|
TensorFlow 算法框架/工具 C++
构建NLP 开发问题之如何将模型导出为 ONNX、TensorRT 或 Tensorflow 格式以便部署
构建NLP 开发问题之如何将模型导出为 ONNX、TensorRT 或 Tensorflow 格式以便部署
|
PyTorch 开发工具 算法框架/工具
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
1397 0
yolo系列的ONNX部署(C++)【适用于v4\v5\v5-6.1\v7】
YOLOV5模型转onnx并推理
YOLOV5模型转onnx并推理
944 1
|
机器学习/深度学习 算法 PyTorch
pytorch模型转ONNX、并进行比较推理
pytorch模型转ONNX、并进行比较推理
735 0
|
机器学习/深度学习 人工智能 并行计算
【PyTorch】Pytorch基础第0章
【PyTorch】Pytorch基础第0章
79 0
|
编解码 算法 计算机视觉
YOLOU 集成超轻量化 YOLO 系列模型YOLO-Fastest v2,ONNX一键导出部署!(二)
YOLOU 集成超轻量化 YOLO 系列模型YOLO-Fastest v2,ONNX一键导出部署!(二)
1002 0
|
机器学习/深度学习 编解码 算法
使用PolyGen和PyTorch生成3D模型
使用PolyGen和PyTorch生成3D模型
140 0
使用PolyGen和PyTorch生成3D模型