【JVM调优实战100例】04——方法区调优实战(中)

简介: 文章目录7.方法区7.1 定义7.2 方法区内存溢出7.3 常量池7.4 String table7.5 String table的位置7.6 String table的垃圾回收7.7 String table调优


在jvm启动时,常量池中的内容都会加载到运行时常量池中,但是此时a,b,ab都还只是一个符号,而不是字符串对象。只有当执行到具体的指令,如0: ldc #2才会创建字符串对象"a"。于此同时,jvm还会去String table[]中去找是否有"a"这个字符串,如果没有则将其加入String table[]。注:String table[]其实是hashtable 结构,不能扩容。


在java代码中新增s4,并反编译。

String s4 = s1 + s2; 

反编译结果如下。

9: new           #5    // class java/lang/StringBuilder
12: dup
13: invokespecial #6   // Method java/lang/StringBuilder."<init>":()V
16: aload_1
17: invokevirtual #7   // Method java/lang/StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder;
20: aload_2
21: invokevirtual #7   // Method java/lang/StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder;
24: invokevirtual #8   // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
27: astore        4


以上操作等同于。


new StringBuilder().append("a").append("b").toString() 
1

其中toString()的方法实现方式是:new String("ab")。所以s3 == s4的结果为fasle.

System.out.println(s3 == s4); //false
1

接着我们在代码中新增s5.


String s5 = "a" + "b";
1

反编译结果如下。


29: ldc           #4                  // String ab
31: astore        5

原来,javac编译时帮助我们进行了优化, 它认为“a”,“b”是常量,结果不可能会发生改变,于是结果直接在编译期确定为ab了。并且,由于"ab"在String table中已经存在,因此不会创建新的字符串对象了。

System.out.println(s3 == s4);  //true
1

intern()方法可以把堆中的字符串对象放入串中,参考以下代码。

public class Demo1_23 {
    // String table["ab", "a", "b"]
    public static void main(String[] args) {
        String x = "ab"; 
        String s = new String("a") + new String("b");     // 堆  new String("a")   new String("b") new String("ab")
        String s2 = s.intern();//将这个字符串对象尝试放入串池,如果有则并不会放入,如果没有则放入串池,会把串池中的对象返回
        System.out.println( s2 == x);  //true,s2与x都是串池中的对象
        System.out.println( s == x ); //false,s是堆中的对象,与串池中的对象是不同的对象
    }
}


下面这种情况x2可以成功加入串池,因此结果为true。

String x2 = new String("c") + new String("d"); // new String("cd")
x2.intern();
String x1 = "cd";
System.out.println(x1 == x2);  //true

不过jdk1.6中调用intern()方法,会将字符串尝试放入串池,如果有则不会放入,如果没有则会复制一份放入串池,因此,串池中的对象与堆中的对象并不是同一个对象。上面同样的代码再jdk1.6中x1 == x2返回false。


串池的特点总结如下。

7.5 String table的位置

在jdk1.6,string table置于常量池,而常量池位于永久代的方法区中。永久代只有full gc触发时才会进行回收,这就导致string table的回收效率低。jdk1.7将string table移到了堆中。


7.6 String table的垃圾回收

参考以下代码配置参数并运行。

/**
 * 演示 StringTable 垃圾回收
 * -Xmx10m -XX:+PrintStringTableStatistics -XX:+PrintGCDetails -verbose:gc
 */
public class Demo1_7 {
    public static void main(String[] args) throws InterruptedException {
        int i = 0;
        try {
            for (int j = 0; j < 100000; j++) { // j=100, j=10000
                String.valueOf(j).intern();
                i++;
            }
        } catch (Throwable e) {
            e.printStackTrace();
        } finally {
            System.out.println(i);
        }
    }
}

打印信息如下

[GC (Allocation Failure) [PSYoungGen: 2048K->488K(2560K)] 2048K->875K(9728K), 0.0028226 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 
[GC (Allocation Failure) [PSYoungGen: 2536K->512K(2560K)] 2923K->958K(9728K), 0.0039494 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[GC (Allocation Failure) [PSYoungGen: 2560K->512K(2560K)] 3006K->1006K(9728K), 0.0020900 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
...
StringTable statistics:
Number of buckets       :     60013 =    480104 bytes, avg   8.000
Number of entries       :     26231 =    629544 bytes, avg  24.000
Number of literals      :     26231 =   1548152 bytes, avg  59.020
Total footprint         :           =   2657800 bytes
Average bucket size     :     0.437
Variance of bucket size :     0.418
Std. dev. of bucket size:     0.646
Maximum bucket size     :         4
相关文章
|
24天前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
51 10
|
25天前
|
存储 Java 开发者
浅析JVM方法解析、创建和链接
上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
|
1月前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
2月前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
37 1
|
2月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
2月前
|
存储 IDE Java
实战优化公司线上系统JVM:从基础到高级
【11月更文挑战第28天】Java虚拟机(JVM)是Java语言的核心组件,它使得Java程序能够实现“一次编写,到处运行”的跨平台特性。在现代应用程序中,JVM的性能和稳定性直接影响到系统的整体表现。本文将深入探讨JVM的基础知识、基本特点、定义、发展历史、主要概念、调试工具、内存管理、垃圾回收、性能调优等方面,并提供一个实际的问题demo,使用IntelliJ IDEA工具进行调试演示。
46 0
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
388 1
|
3月前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
49 4
|
12天前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。