Python 之父为什么嫌弃 lambda 匿名函数?

简介: Python 支持 lambda 匿名函数,其扩展的 BNF 表示法是lambda_expr ::= "lambda" [parameter_list] ":" expression ,也就是 lambda 参数序列:表达式。

Python 支持 lambda 匿名函数,其扩展的 BNF 表示法是lambda_expr ::= "lambda" [parameter_list] ":" expression ,也就是 lambda 参数序列:表达式

这是一种便捷的函数定义方式,若翻译成我们熟知的函数形式,会是这个样子:

def <lambda>(parameter_list):
    return expression
复制代码

也就是说,Python 中的 lambda 函数是一种可接收多个参数的函数,返回值是一个表达式。

它最大的好处是单行简洁,不需要函数命名与换行缩进。

不得不说,匿名函数有时候是挺好用的,比如下文会介绍到的一些常见用法,它因此受到了不少人的推崇。

但是,匿名函数通常也会造成代码难以阅读,容易被人滥用,再加上 Python 只提供了对它的“残疾的”支持,所以又有一些观点不建议使用匿名函数。

1、lambda 怎么使用?

lambda 函数通常的用法是结合 map()、reduce()、filter()、sorted() 等函数一起使用,这些函数的共性是:都可以接收其它函数作为参数。

例如下面的几个例子:

my_list = [3, 1, 5, 4, 10]
# 元素全加1,结果:[4, 2, 6, 5, 11]
list(map(lambda i:i+1, my_list)) 
# 过滤小于10的元素,结果:[3, 1, 5, 4]
list(filter(lambda i:i<10, my_list)) 
# 元素累加,结果:33
from functools import reduce
reduce(lambda i,j:i+j, my_list, 10)
# 字典按值排序,结果:[('b', 1), ('a', 3), ('d', 4), ('c', 5)]
my_dict = {'a':3, 'b':1, 'c':5, 'd':4}
sorted(my_dict.items(), key=lambda item:item[1])
复制代码

初学者也许会觉得代码读不懂,但是只要记住“Python中的函数是一等公民”,知道一个函数可以被作为另一个函数的参数或者返回值,就容易理解了。

比如对于 map() 函数的例子,你可以理解成这个形式:

my_func = lambda i:i+1
list(map(my_func, my_list)) 
复制代码

甚至可以还原成普通的函数:

def add_one(i):
  return i+1
list(map(add_one, my_list)) 
复制代码

map() 函数的第一个参数是一个函数,第二个参数是一个可迭代对象。这第一个参数会迭代地调用第二个参数中的元素,调用的结果以迭代器的形式返回。

这个例子使用了 list(),是为了方便一次性取出迭代器中的元素,直观地展示出来,在实际使用中,很可能会是基于迭代器的形式。

由这几种用法,我们可以总结出 lambda 函数的使用规律:

  • 它出现在需要使用函数的地方
  • 它适合实现简单的功能
  • 它是一次性的用途,不能在其它地方复用
  • 它一般不会被独立使用,总是作为其它函数的一部分

2、lambda 有什么问题?

由上面的用法可以看出,使用 lambda 函数的代码比较紧凑简洁,所以有人称它体现了“Pythonic”的优雅思想。

但是,lambda 函数有没有什么缺陷呢?

有!当前的 lambda 函数有一个最大的问题,即只支持单行表达式,无法实现丰富的功能,例如无法在函数创建时使用语句(statement),无法使用 if-else 的判断条件,也无法使用 try-except 的异常捕获机制,等等。

这极大地限制了它的能力,导致了它被人诟病为“残疾的”。

从技术实现的角度上看, 这个问题可以通过语法层面的设计来解决。

在当年的邮件组讨论中,有人提出过一些解决思路,比如这封邮件:

网络异常,图片无法展示
|

它提出了一个lambda args::suite 的想法,支持写成这样的形式:

ss = sorted(seq, key=(lambda x::
            try: return abs(x)
            except TypeError: return 0))
复制代码

但是,Guido 很快就否决了这个思路。

他写了一篇文章《Language Design Is Not Just Solving Puzzles》来回应:

网络异常,图片无法展示
|

其基本观点是:不能光顾着解决一个问题/实现某种功能,就引入缺乏“Pythonicity”的语言设计。

那么,为什么 Guido 会认为这是一种不好的设计呢?

我试着概括一下,理由是:

  • 双冒号“::”凭空在此引入,但是跟切片语法中的“::”完全不同,而且跟 C++/Perl 中的作用域操作符用法也不同
  • 即使不用双冒号,用其它符号表示(比如单冒号),还是难以接受,因为都会在一个表达式中嵌入缩进代码块。这就跟使用花括号和 begin/end 关键字来作语句分组(statement grouping)一样,都令人难以接受
  • 在 lambda 中实现其它功能并不重要,这还会让解析器变得复杂(需区分是否有缩进、记录缩进级别),显得小题大做了

简而言之,他认为简洁友好的用户体验更为重要,如果简洁的语法无法满足需求,就应该写成具名函数的形式,而非设计出复杂的匿名函数。

3、为什么 Guido 想移除 lambda?

上文提到的多行 lambda 语句(multi-statement lambda)事件发生在 2006 年,我们看到了 Guido 不想给 lambda 引入复杂设计的原因。

但是,早在 2005 年,Guido 就曾经想要从 Python 移除 lambda,他对它的“嫌弃”是一个“历史悠久”的传统……

在《The fate of reduce() in Python 3000》这篇短文中,Guido 提出要一次性移除 reduce()、map()、filter() 以及 lambda。

移除 lambda 的理由如下:

  • 对于不熟悉 Lisp 或 Scheme 的用户,lambda 这名字容易造成混淆
  • 很多人误以为匿名函数能做嵌套函数不能做的事,但其实并无区别;存在lambda,就会造成不必要的选择,减少选择,可以简化思维
  • 移除 reduce()、map() 和 filter() 后,就没必要写简短的局部函数了

回顾一下我们在前文中总结出的 lambda 的 4 条使用规律,可以发现它跟几个高阶函数(可以接收其它函数作为参数的函数)有较强的“寄生关系”,如果它们能移除了的话,lambda 确实就没有什么独立存留的意义了。

那么,为什么 Guido 觉得应该移除那几个高阶函数呢?

主要的理由有:

  • 可以替换成更加清晰的列表解析式或者生成器表达式,例如 filter(P,S) 可以写成 [x for x in S if P(x)],map(F, S) 写成 [F(x) for x in S]
  • 至于 reduce(),他说这是最讨厌的,除了涉及 + 和 * 的少数用法,其它时候他总要拿出纸笔来画图解才能搞清楚。除了显式地写循环,他还针对 reduce() 的几种用法而提出了几个替代用法,包括引入新的 any() 和 all() 函数

总体而言,Guido 的想法暗合了《The Zen of Python》中的这一条:There should be one-- and preferably only one --obvious way to do it。



目录
相关文章
|
3月前
|
Python
【python从入门到精通】-- 第五战:函数大总结
【python从入门到精通】-- 第五战:函数大总结
97 0
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
138 67
|
28天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
48 18
|
19天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
29天前
|
Python
Python中的函数
Python中的函数
43 8
|
2月前
|
监控 测试技术 数据库
Python中的装饰器:解锁函数增强的魔法####
本文深入探讨了Python语言中一个既强大又灵活的特性——装饰器(Decorator),它以一种优雅的方式实现了函数功能的扩展与增强。不同于传统的代码复用机制,装饰器通过高阶函数的形式,为开发者提供了在不修改原函数源代码的前提下,动态添加新功能的能力。我们将从装饰器的基本概念入手,逐步解析其工作原理,并通过一系列实例展示如何利用装饰器进行日志记录、性能测试、事务处理等常见任务,最终揭示装饰器在提升代码可读性、维护性和功能性方面的独特价值。 ####
|
2月前
|
缓存 前端开发 JavaScript
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
在我们快速发展的在线环境中,只需几秒钟加载的网站就能真正脱颖而出。您是否知道加载时间较快的网站的转化率比加载时间较长的网站高出三倍?
26 0
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
|
2月前
|
存储 JSON 网络安全
使用 EFS 在 AWS Lambda 上安装 Python 依赖项
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
34 1
|
2月前
|
Python
Python中的`range`函数与负增长
在Python中,`range`函数用于生成整数序列,支持正向和负向增长。本文详细介绍了如何使用`range`生成负增长的整数序列,并提供了多个实际应用示例,如反向遍历列表、生成倒计时和计算递减等差数列的和。通过这些示例,读者可以更好地掌握`range`函数的使用方法。
54 5
|
3月前
|
Python
Python之函数详解
【10月更文挑战第12天】
Python之函数详解