Synchronized 和 Lock 的区别和使用场景

简介: 并发编程中,锁是经常需要用到的,今天我们一起来看下Java中的锁机制:synchronized和lock。

Synchronized 和 Lock的概念

Synchronized 是Java 并发编程中很重要的关键字,另外一个很重要的是 volatile。Syncronized 的目的是一次只允许一个线程进入由他修饰的代码段,从而允许他们进行自我保护。Synchronized 很像生活中的锁例子,进入由Synchronized 保护的代码区首先需要获取 Synchronized 这把锁,其他线程想要执行必须进行等待。Synchronized 锁住的代码区域执行完成后需要把锁归还,也就是释放锁,这样才能够让其他线程使用。

Lock 是 Java并发编程中很重要的一个接口,它要比 Synchronized 关键字更能直译"锁"的概念,Lock需要手动加锁和手动解锁,一般通过 lock.lock() 方法来进行加锁, 通过 lock.unlock() 方法进行解锁。与 Lock 关联密切的锁有 ReetrantLock 和 ReadWriteLock。

ReetrantLock 实现了Lock接口,它是一个可重入锁,内部定义了公平锁与非公平锁。

ReadWriteLock 一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。ReentrantReadWirteLock实现了ReadWirteLock接口,并未实现Lock接口。

Synchronized 和 Lock 的使用

Synchronized 和 Lock 的使用:

下面是 Synchronized 的例子:

在方法上使用 Synchronized

方法声明时使用,放在范围操作符之后,返回类型声明之前。即一次只能有一个线程进入该方法,其他线程要想在此时调用该方法,只能排队等候。

private int number;
public synchronized void numIncrease(){
  number++;
}

在某个代码段使用 Synchronized

你也可以在某个代码块上使用 Synchronized 关键字,表示只能有一个线程进入某个代码段。

public void numDecrease(Object num){

synchronized (num){
number++;
}
}

使用 Synchronized 锁住整个对象

synchronized后面括号里是一对象,此时线程获得的是对象锁。

public void test() {
synchronized (this) {
// ...
}
}

下面是 Lock 的例子:

Lock是一个接口,它主要由下面这几个方法

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();
}

对上面 Lock 接口的方法做一个简单的解释:

lock(): lock 方法可能是平常使用最多的一个方法,就是用来获取锁。如果锁被其他线程获取,则进行等待。

如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。

Lock lock = ...;
lock.lock();
try{
//处理任务
}catch(Exception ex){

}finally{
lock.unlock(); //释放锁
}

tryLock() :方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

tryLock(long time, TimeUnit unit) 方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

Lock lock = ...;
if(lock.tryLock()) {
try{
//处理任务
}catch(Exception ex){

}finally{
lock.unlock(); //释放锁
}
}else {
//如果不能获取锁,则直接做其他事情
}

lockInterruptibly() : 此方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就是说,当两个线程同时通过 lock.lockInterruptibly() 想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用 threadB.interrupt() 方法能够中断线程B的等待过程。

由于 lockInterruptibly() 的声明中抛出了异常,所以 lock.lockInterruptibly() 必须放在try块中或者在调用lockInterruptibly() 的方法外声明抛出 InterruptedException。一般形式如下:

public void method() throws InterruptedException {
lock.lockInterruptibly();
try {
//.....
}
finally {
lock.unlock();
}
}

一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

Synchronized 和 Lock 的主要区别

Synchronzied 和 Lock 的主要区别如下:

  • 存在层面:Syncronized 是Java 中的一个关键字,存在于 JVM 层面,Lock 是 Java 中的一个接口
  • 锁的释放条件:1. 获取锁的线程执行完同步代码后,自动释放;2. 线程发生异常时,JVM会让线程释放锁;Lock 必须在 finally 关键字中释放锁,不然容易造成线程死锁
  • 锁的获取: 在 Syncronized 中,假设线程 A 获得锁,B 线程等待。如果 A 发生阻塞,那么 B 会一直等待。在 Lock 中,会分情况而定,Lock 中有尝试获取锁的方法,如果尝试获取到锁,则不用一直等待
  • 锁的状态:Synchronized 无法判断锁的状态,Lock 则可以判断
  • 锁的类型:Synchronized 是可重入,不可中断,非公平锁;Lock 锁则是 可重入,可判断,可公平锁
  • 锁的性能:Synchronized 适用于少量同步的情况下,性能开销比较大。Lock 锁适用于大量同步阶段:
    • Lock 锁可以提高多个线程进行读的效率(使用 readWriteLock)
    • 在竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍,但是ReetrantLock的性能能维持常态;
    • ReetrantLock 提供了多样化的同步,比如有时间限制的同步,可以被Interrupt的同步(synchronized的同步是不能Interrupt的)等。
            </div>
目录
相关文章
|
自然语言处理 监控 搜索推荐
Elasticsearch的应用场景
Elasticsearch的应用场景
|
消息中间件 Dubbo Java
Spring全家桶 、Dubbo、分布式、消息队列后端必备全套开源项目
基于 Spring Boot 2.X 版本的深度入门教程。 市面上的 Spring Boot 基础入门文章很多,但是深度入门文章却很少。对于很多开发者来说,入门即是其对某个技术栈的最终理解,一方面是开发者“比较懒”,另一方面是文章作者把 Spring Boot 入门写的太浅,又或者不够全面。
|
存储 算法 数据库
一起聊聊图像质量和美学评估的数据集
图像质量和美学评估是计算机视觉领域中热点的研究问题,并且极具应用前景,可与众多实际应用深度结合。评价一张图片,主要从两个方向,一个是图像的质量,如像素、清晰度、有无噪声等,一个是图像的感觉,也就是美学,如构图、颜色、内容主体等。通过这两个方面就可以评价一张图片的好坏,通过计算机视觉算法,可以为图片自动评分,得分高的图片被认为较好,可以用于推荐和搜索等应用场景。本文主要聊聊一些关于图像质量和美学评估
13075 1
|
12月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
823 8
|
10月前
|
人工智能 弹性计算 架构师
如何推进软硬件协同优化,点亮 AI 新时代?看看这些大咖怎么说
围绕 AI、操作系统、 Arm 生态等关键技术和领域,深入探讨了 AI 技术与操作系统的融合。
|
人工智能 IDE 程序员
一文梳理我们是如何打造出国内领先的 AI 编程助手「通义灵码」
大语言模型的革命性突破使智能编程成为了可能,通义灵码正是基于通义大模型打造的 AI 编程助手,通过 IDE 插件的形式提供代码补全、单元测试生成等功能,能达到毫秒级的响应速度。目前,通义灵码已在阿里云内部及多家企业中应用,阿里云也在探索多智能体产品,即 AI 程序员,助力数字世界的蓬勃发展,颠覆 IT 生产力。
15523 235
|
缓存 Windows
一文教会你如何重装Windows10系统【过程+图解+说明】
该博客文章是一份详细的Windows 10系统重装教程,包括制作过程、图解说明和注意事项,作者分享了自己制作启动盘并成功安装系统的经验,适合初学者参考。
一文教会你如何重装Windows10系统【过程+图解+说明】
|
存储 机器学习/深度学习 并行计算
GPU通信互联技术:GPUDirect、NVLink与RDMA
在高性能计算和深度学习领域,GPU已成为关键工具。然而,随着模型复杂度和数据量的增加,单个GPU难以满足需求,多GPU甚至多服务器协同工作成为常态。本文探讨了三种主要的GPU通信互联技术:GPUDirect、NVLink和RDMA。GPUDirect通过绕过CPU实现GPU与设备直接通信;NVLink提供高速点对点连接和支持内存共享;RDMA则在网络层面实现直接内存访问,降低延迟。这些技术各有优势,适用于不同场景,为AI和高性能计算提供了强大支持。
|
SQL 开发框架 数据库连接
uniapp中sqlite数据库常用操作的简单封装
uniapp中sqlite数据库常用操作的简单封装
1301 0
checking build system type... ./config.guess: unable to guess system type/you must specify one
checking build system type... ./config.guess: unable to guess system type/you must specify one
585 0