如何高效地远程部署?自动化运维利器 Fabric 教程

简介: 关于 Python 自动化的话题,在上一篇文章中,我介绍了 Invoke 库,它是 Fabric 的最重要组件之一。Fabric 也是一个被广泛应用的自动化工具库,是不得不提的自动化运维利器,所以,本文将来介绍一下它。Fabric 主要用在应用部署与系统管理等任务的自动化,简单轻量级,提供有丰富的 SSH 扩展接口。在 Fabric 1.x 版本中,它混杂了本地及远程两类功能;但自 Fabric 2.x 版本起,它分离出了独立的 Invoke 库,来处理本地的自动化任务,而 Fabric 则聚焦于远程与网络层面的任务。

关于 Python 自动化的话题,在上一篇文章中,我介绍了 Invoke 库,它是 Fabric 的最重要组件之一。Fabric 也是一个被广泛应用的自动化工具库,是不得不提的自动化运维利器,所以,本文将来介绍一下它。

Fabric 主要用在应用部署与系统管理等任务的自动化,简单轻量级,提供有丰富的 SSH 扩展接口。在 Fabric 1.x 版本中,它混杂了本地及远程两类功能;但自 Fabric 2.x 版本起,它分离出了独立的 Invoke 库,来处理本地的自动化任务,而 Fabric 则聚焦于远程与网络层面的任务。

为了做到这点,Fabric 主要依赖另一大核心组件 Paramiko,它是基于 SSH 协议的远程控制模块,Fabric 在其基础上封装出了更加友好的接口,可以远程执行 Shell 命令、传输文件、批量操作服务器、身份认证、多种配置与设置代理,等等。

一、Fabric 的版本区分

Python 2 版本已经被官宣在今年元旦“退休”了,未来只会是 Python 3 的舞台。为了适应 Python 版本的非兼容性迁移,很多项目也必须推出自己的新版本(兼容或只支持 Python 3),其中就包括本文的主角 Fabric。

Fabric 自身存在着 2 个大版本:Fabric 1 和 Fabric 2,而在这个库的基础上,还有两个很容易混淆的相关库:Fabric2 和 Fabric3(注意这里的数字是库名的一部分)。

它们的区分如下:

  • Fabric 1.x:支持 Python 2.5-2.7,但不支持 Python 3
  • Fabric 2.x:支持 Python 2.7 与 3.4+,但不兼容 Fabric 1.x 的 fabfile
  • Fabric2:等同于 Fabric 2.x,为了使不同版本共存(装一个 1.x 旧版本,再装它作为新版本)
  • Fabric3:一个基于 Fabric 1.x 的 fork(非官方),兼容 Python 2&3,兼容 Fabric1.x 的 fabfile

综上可见,我们推荐使用官方的 Fabric 2.x 系列版本,但同时要注意,某些过时的教程可能是基于早期版本的(或非官方的 Fabric3,也是基于 Fabric 1.x),需要注意识别。

例如,在 Fabric 1.x 系列中这么写导入:from fabric.api import run;在新版本中将报错:“ImportError: No module named api”(PS:可根据是否有 fabric.api 来判断 Fabric 的版本,就像在 Python 中根据 print 语句或 print 函数来判断版本一样)。同时,由于新版本不支持老版本的 fabfile,在使用时就可能报错:“No idea what 'xxx' is!”

Fabric 2 是非兼容性版本,相比于前个版本,它主要改进的点有:

  • 支持 Python 2.7 与 3.4+
  • 线程安全,取消了多进程的并发实现
  • API 围绕 fabric.connection.Connection 进行了重组
  • 全面修改了命令行解析器,允许在每个任务的基础上使用规则的 GNU/POSIX  风格的标志和选项(不再需要 fab mytask:weird = custom,arg = format)
  • 可以声明前置任务与后置任务
  • ……(官方列了10几条 [1],本文不一一罗列)

之前介绍过的 invoke,就是在开发 Fabric 2 时被分离出来的,具体的原因可参见这个回答 [2]。总而言之,在使用 Fabric 时,应该注意版本差异的问题。

二、Fabric 的基本用法

1、安装

首先是安装:pip intall fabric ,安装后,可在命令行窗口查看版本信息:

>>> fab -V
Fabric 2.5.0
Paramiko 2.7.1
Invoke 1.4.0复制代码

执行“fab -V”,以上结果可看出我安装的是 Fabric 2.5.0 版本,同时可看到它的两个核心依赖库 Paramiko 及 Invoke 的版本信息。

2、一个简单的例子

Fabric 主要用于远程任务,即要对远程服务器进行操作,下面是一个简单的例子:

# 可使用任意的文件名
from fabric import Connection
host_ip = '47.xx.xx.xx'  # 服务器地址
user_name = 'root' # 服务器用户名
password = '****'  # 服务器密码
cmd = 'date'  # shell 命令,查询服务器上的时间
con = Connection(host_ip, user_name, connect_kwargs={'password': password})
result = con.run(cmd, hide=True)
print(result)复制代码

以上代码,通过账号+密码登录到远程服务器,然后执行date命令,查看服务器的时间,执行结果:

Command exited with status 0.
=== stdout ===
Fri Feb 14 15:33:05 CST 2020
(no stderr)复制代码

现在打印的结果中,除了服务器时间,还有一些无关的信息。这是因为它打印的“result”是一个"fabric.runners.Result"类,我们可以把其中的信息解析出来:

print(result.stdout)  # Fri Feb 14 15:33:05 CST 2020
print(result.exited)  # 0
print(result.ok)      # True
print(result.failed)  # False
print(result.command) # date
print(result.connection.host) # 47.xx.xx.xx复制代码

上述代码使用了 Connection 类及其 run() 方法,可在连接的服务器上运行 shell 命令。如果需要用管理员权限,则需替换成 sudo() 方法。如果要在本地执行 shell 命令,则需替换成 local() 方法。

除此之外,还有 get()、put() 等方法,详见下文介绍。

3、命令行用法

上例代码可写在任意的 .py 脚本中,然后运行该脚本,或者稍微封装下再导入到其它脚本中使用。

另外,Fabric 还是个命令行工具,可以通过fab命令来执行任务。我们稍微改造一下上例的代码:

# 文件名:fabfile.py
from fabric import Connection
from fabric import task
host_ip = '47.xx.xx.xx'  # 服务器地址
user_name = 'root' # 服务器用户名
password = '****'  # 服务器密码
cmd = 'date'  # shell 命令,查询服务器上的时间
@task
def test(c):
    """
    Get date from remote host.
    """
    con = Connection(host_ip, user_name, connect_kwargs={'password': password})
    result = con.run(cmd, hide=True)
    print(result.stdout)  # 只打印时间复制代码

解释一下,主要的改动点有:

  • fabfile.py 文件名:入口代码的脚本名必须用这个名字
  • @task 装饰器:需要从 fabric 中引入这个装饰器,它是对 invoke 的 @task 装饰器的封装,实际用法跟 invoke 一样(注意:它也需要有上下文参数“c”,但实际上它并没有在代码块中使用,而是用了 Connection 类的实例)

然后,在该脚本同级目录的命令行窗口中,可以查看和执行相应的任务:

>>> fab -l
Available tasks:
  test   Get date from remote host.
>>> fab test
Fri Feb 14 16:10:24 CST 2020复制代码

fab 是 Invoke 的扩展实现,继承了很多原有功能,所以执行“fab --help”,与之前介绍的“inv --help”相比,你会发现它们的很多参数与解释都是一模一样的。

7895d813191ae5af42e341f94a5084b.png

fab 针对远程服务的场景,添加了几个命令行选项(已标蓝),其中:

  • --prompt-for-login-password:令程序在命令行中输入 SSH 登录密码(上例在代码中指定了 connect_kwargs.password 参数,若用此选项,可要求在执行时再手工输入密码)
  • --prompt-for-passphrase:令程序在命令行中输入 SSH 私钥加密文件的路径
  • -H 或 --hosts:指定要连接的 host 名
  • -i 或 --identity:指定 SSH 连接所用的私钥文件
  • -S 或 --ssh-config:指定运行时要加载的 SSH 配置文件

4、交互式操作

远程服务器上若有交互式提示,要求输入密码或“yes”之类的信息,这就要求 Fabric 能够监听并作出回应。

以下是一个简单示例。引入 invoke 的 Responder,初始化内容是一个正则字符串和回应信息,最后赋值给 watchers 参数:

from invoke import Responder
from fabric import Connection
c = Connection('host')
sudopass = Responder(
     pattern=r'\[sudo\] password:',
     response='mypassword\n')
c.run('sudo whoami', pty=True, watchers=[sudopass])复制代码

5、传输文件

本地与服务器间的文件传输是常见用法。Fabric 在这方面做了很好的封装,Connection 类中有以下两个方法可用:

  • get(args, *kwargs):拉取远端文件到本地文件系统或类文件(file-like)对象
  • put(args, *kwargs):推送本地文件或类文件对象到远端文件系统

在已建立连接的情况下,示例:

# (略)
con.get('/opt/123.txt', '123.txt')
con.put('test.txt', '/opt/test.txt')复制代码

第一个参数指的是要传输的源文件,第二个参数是要传输的目的地,可以指定成文件名或者文件夹(为空或 None 时,使用默认路径):

# (略)
con.get('/opt/123.txt', '')  # 为空时,使用默认路径
con.put('test.txt', '/opt/') # 指定路径 /opt/复制代码

get() 方法的默认存储路径是os.getcwd ,而 put() 方法的默认存储路径是 home 目录。

6、服务器批量操作

对于服务器集群的批量操作,最简单的实现方法是用 for 循环,然后逐一建立 connection 和执行操作,类似这样:

for host in ('web1', 'web2', 'mac1'):
    result = Connection(host).run('uname -s')复制代码

但有时候,这样的方案会存在问题:

  • 如果存在多组不同的服务器集群,需要执行不同操作,那么需要写很多 for 循环
  • 如果想把每组操作的结果聚合起来(例如字典形式,key-主机,value-结果),还得在 for 循环之外添加额外的操作
  • for 循环是顺序同步执行的,效率太低,而且缺乏异常处理机制(若中间出现异常,会导致跳出后续操作)

对于这些问题,Fabric 提出了 Group 的概念,可将一组主机定义成一个 Group,它的 API 方法跟 Connection 一样,即一个 Group 可简化地视为一个 Connection。

然后,开发者只需要简单地操作这个 Group,最后得到一个结果集即可,减少了自己在异常处理及执行顺序上的工作。

Fabric 提供了一个 fabric.group.Group 基类,并由其派生出两个子类,区别是:

  • SerialGroup(hosts, *kwargs):按串行方式执行操作
  • ThreadingGroup(hosts, *kwargs):按并发方式执行操作

Group 的类型决定了主机集群的操作方式,我们只需要做出选择即可。然后,它们的执行结果是一个fabric.group.GroupResult类,它是 dict 的子类,存储了每个主机 connection 及其执行结果的对应关系。

>>> from fabric import SerialGroup
>>> results = SerialGroup('web1', 'web2', 'mac1').run('uname -s')
>>> print(results)
<GroupResult: {
    <Connection 'web1'>: <CommandResult 'uname -s'>,
    <Connection 'web2'>: <CommandResult 'uname -s'>,
    <Connection 'mac1'>: <CommandResult 'uname -s'>,
}>复制代码

另外,GroupResult 还提供了 failed 与 succeeded 两个属性,可以取出失败/成功的子集。由此,也可以方便地批量进行二次操作。

三、Fabric 的进阶用法

1、身份认证

Fabric 使用 SSH 协议来建立远程会话,它是一种相对安全的基于应用层的加密传输协议。

基本来说,它有两种级别的安全认证方式:

  • 基于口令的身份认证:使用账号与密码来登录远程主机,安全性较低,容易受到“中间人”攻击
  • 基于密钥的身份认证:使用密钥对方式(公钥放服务端,私钥放客户端),不会受到“中间人”攻击,但登录耗时较长

前文在举例时,我们用了第一种方式,即通过指定 connect_kwargs.password 参数,使用口令来登录。

Fabric 当然也支持采用第二种方式,有三种方法来指定私钥文件的路径,优先级如下:

  • 优先查找 connectkwargs.keyfilename 参数,找到则用作私钥
  • 其次查找命令行用法的 --identify 选项
  • 最后默认使用操作系统的 ssh_config 文件中的`IdentityFile` 的值

如果私钥文件本身还被加密过,则需要使用 connect_kwargs.passphrase 参数。

2、配置文件

Fabric 支持把一些参数项与业务代码分离,即通过配置文件来管理它们,例如前面提到的密码和私钥文件,可写在配置文件中,避免与代码耦合。

Fabric 基本沿用了 Invoke 的配置文件体系(官方文档中列出了 9 层),同时增加了一些跟 SSH 相关的配置项。支持的文件格式有 .yaml、.yml、.json 与 .py(按此次序排优先级),推荐使用 yaml 格式(后缀可简写成 yml)。

其中,比较常用的配置文件有:

  • 系统级的配置文件:/etc/fabric.yml
  • 用户级的配置文件:~/.fabric.yml(Windows 在 C:Usersxxx 下)
  • 项目级的配置文件:/myproject/fabric.yml

以上文件的优先级递减,由于我本机是 Windows,为了方便,我在用户目录建一个".fabric.yml"文件,内容如下:

# filename:.fabric.yml
user: root
connect_kwargs:
  password: xxxx
# 若用密钥,则如下
#  key_filename:
#    - your_key_file复制代码

我们把用户名和密码抽离出来了,所以 fabfile 中就可以删掉这些内容:

# 文件名:fabfile.py
from fabric import Connection
from fabric import task
host_ip = '47.xx.xx.xx'  # 服务器地址
cmd = 'date'  # shell 命令,查询服务器上的时间
@task
def test(c):
    """
    Get date from remote host.
    """
    con = Connection(host_ip)
    result = con.run(cmd, hide=True)
    print(result.stdout) 复制代码

然后,在命令行中执行:

>>> fab test
Tue Feb 18 10:33:38 CST 2020复制代码

配置文件中还可以设置很多参数。

3、网络网关

如果远程服务是网络隔离的,无法直接被访问到(处在不同局域网),这时候需要有网关/代理/隧道,这个中间层的机器通常被称为跳板机或堡垒机。

Fabric 中有两种网关解决方案,对应到 OpenSSH 客户端的两种选项:

  • ProxyJump:简单,开销少,可嵌套
  • ProxyCommand:开销大,不可嵌套,更灵活

在创建 Fabric 的 Connection 对象时,可通过指定 gateway 参数来应用这两种方案:

10871bcb375dbec435bc08408e2d728.png

ProxyJump 方式就是在一个 Connection 中嵌套一个 Connection  作为前者的网关,后者使用 SSH 协议的direct-tcpip 为前者打开与实际远程主机的连接,而且后者还可以继续嵌套使用自己的网关。

from fabric import Connection
c = Connection('internalhost', gateway=Connection('gatewayhost'))复制代码

ProxyCommand 方式是客户端在本地用 ssh 命令(类似“ssh -W %h:%p gatewayhost”),创建一个子进程,该子进程与服务端进行通信,同时它能读取标准输入和输出。

这部分的实现细节分别在paramiko.channel.Channelparamiko.proxy.ProxyCommand,除了在参数中指定,也可以在 Fabric 支持的配置文件中定义。

四、小结

Fabric 的非兼容版本造成了一定程度的社区分裂,这无疑跟 Python 3 的推行脱不开关系,但是我们有理由相信,新版本优胜于老版本。

网上关于 Fabric 的文章,很多已过时了。本文针对最新的官方文档,梳理出了较为全面的知识点,可以带大家很好地入门 Fabric。




目录
相关文章
|
2月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
68 4
|
1月前
|
关系型数据库 MySQL Java
【Docker最新版教程】一文带你快速入门Docker常见用法,实现容器编排和自动化部署上线项目
Docker快速入门到项目部署,MySQL部署+Nginx部署+docker自定义镜像+docker网络+DockerCompose项目实战一文搞定!
|
28天前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
28天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
71 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
1月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
61 4
|
2月前
|
存储 运维 监控
高效运维:从基础架构到自动化管理的全面指南
【10月更文挑战第11天】 本文将深入探讨如何通过优化基础架构和引入自动化管理来提升企业IT运维效率。我们将从服务器的选择与配置、存储解决方案的评估,到网络的设计与监控,逐一解析每个环节的关键技术点。同时,重点讨论自动化工具在现代运维中的应用,包括配置管理、持续集成与部署(CI/CD)、自动化测试及故障排除等方面。通过实际案例分析,展示这些技术如何协同工作,实现高效的运维管理。无论是IT初学者还是经验丰富的专业人员,都能从中获得有价值的见解和实操经验。
104 1
|
2月前
|
运维 监控 测试技术
构建高效运维体系:从监控到自动化的实践之路
【10月更文挑战第9天】 在当今信息技术飞速发展的时代,运维作为保障系统稳定性与效率的关键角色,正面临前所未有的挑战。本文将探讨如何通过构建一个高效的运维体系来应对这些挑战,包括监控系统的搭建、自动化工具的应用以及故障应急处理机制的制定。我们将结合具体案例,分析这些措施如何帮助提升系统的可靠性和运维团队的工作效率。
62 1
|
2月前
|
运维 jenkins 持续交付
自动化部署的魅力:如何用Jenkins和Docker简化运维工作
【10月更文挑战第7天】在现代软件开发周期中,快速且高效的部署是至关重要的。本文将引导你理解如何使用Jenkins和Docker实现自动化部署,从而简化运维流程。我们将从基础概念开始,逐步深入到实战操作,让你轻松掌握这一强大的工具组合。通过这篇文章,你将学会如何利用这些工具来提升你的工作效率,并减少人为错误的可能性。
|
2月前
|
存储 运维 监控
高效运维管理:从基础架构优化到自动化实践
在当今数字化时代,高效运维管理已成为企业IT部门的重要任务。本文将探讨如何通过基础架构优化和自动化实践来提升运维效率,确保系统的稳定性和可靠性。我们将从服务器选型、存储优化、网络配置等方面入手,逐步引导读者了解运维管理的核心内容。同时,我们还将介绍自动化工具的使用,帮助运维人员提高工作效率,降低人为错误的发生。通过本文的学习,您将掌握高效运维管理的关键技巧,为企业的发展提供有力支持。

热门文章

最新文章