Python 任务自动化工具 tox 教程

简介: 其核心作用是支持创建隔离的 Python 环境,在里面可以安装不同版本的 Python 解释器与各种依赖库,以此方便开发者做自动化测试、打包、持续集成等事情。简单来说,tox 是一个管理测试虚拟环境的命令行工具。 它已存在多年且广被开发者们使用,例如,著名的云计算平台 OpenStack 也采用了它,作为最基础的测试工具之一

Command line driven CI frontend and development task automation tool

命令行驱动的 CI 前端和开发任务自动化工具

其核心作用是支持创建隔离的 Python 环境,在里面可以安装不同版本的 Python 解释器与各种依赖库,以此方便开发者做自动化测试、打包、持续集成等事情。

简单来说,tox 是一个管理测试虚拟环境的命令行工具。 它已存在多年且广被开发者们使用,例如,著名的云计算平台 OpenStack 也采用了它,作为最基础的测试工具之一。

1、tox 能做什么?

细分的用途包括:

  • 创建开发环境
  • 运行静态代码分析与测试工具
  • 自动化构建包
  • 针对 tox 构建的软件包运行测试
  • 检查软件包是否能在不同的 Python 版本/解释器中顺利安装
  • 统一持续集成(CI)和基于命令行的测试
  • 创建和部署项目文档
  • 将软件包发布到 PyPI 或任何其它平台

tox 官方文档中列出了 40 余种使用场景的示例,详细的列表可查看:tox.readthedocs.io/en/latest/e…

da031687cecb5f57fe897a40af90fc8.png

2、tox 怎么配置?

关于它的用法:使用pip install tox 安装,使用tox 运行全部测试环境,和tox -e envname 运行指定的环境。还有不少的命令行参数,通过tox -h 查看。

tox 的行为由其配置文件控制,当前它支持 3 种配置文件:

  1. pyproject.toml
  2. tox.ini
  3. setup.cfg

以 tox 项目自己的 tox.ini 配置内容为例,可以看到它是这样配置的(github.com/tox-dev/tox…):

78062b610d758b0a1f35b0f3c3bd2b6.png

943e16c98d2c7d2b59cff4475294844.png

每个[xxx]及其下方内容组成一个章节(section),每个章节间使用空行作间隔。

[tox]下面是全局性的配置项,envlist 字段定义了 tox 去操作的环境。[xxx]下面是 xxx 虚拟环境的配置项,[xxx:yyy]继承 xxx 的配置,同时其自身配置项的优先级更高。

对于每个虚拟环境,可用的配置项很多,例如常用的有:description(描述信息)、basepython(Python解释器版本)、deps(环境依赖项)、commands(命令语句)等等。

tox 还支持作变量替换,它提供了一些内置的基础变量(全局的或对于虚拟环境的):{toxinidir}、{homedir}、{envname}、{envdir}等等。

除了基础性的变量替换,它还支持这些高级用法:

  • 取操作系统的环境变量:{env:KEY},效果等同于os.environ['KEY'] 。可以变化成:{env:KEY:DEFAULTVALUE},在取不到环境变量时则使用默认值;{env:KEY:{env:DEFAULTOFKEY}},达到 if-else 的取值效果
  • 传递命令行参数:{posargs:DEFAULTS},当没有命令行参数时,使用 DEFAULTS 值。使用方式:tox arg1 arg2 传两个参,或者tox -- --opt1 arg1 将“-- opt1 arg1”作为整体传入。
  • 章节间传值:{[sectionname]valuename},不同章节的内容可以传递使用。
  • 交互式控制台注入:{tty:ONVALUE:OFFVALUE},当交互式 shell 控制台开启时,使用第一个值,否则使用第二个。pytest 在使用“--pdb”时,是这样的例子。

花括号“{}”除了可以做变量替换使用,它还可以作为“或关系”判断的取值。直接看下面的例子:

[tox]
envlist = {py27,py36}-django{15,16}复制代码

{py27,py36}-django{15,16} 的 2 组花括号内各有 2 个值,它们实际可以组合成 4 个环境:py27-django15、py27-django16、py36-django15、py36-django16。

关于 tox 有哪些配置项、使用条件、什么含义、高级用法等等内容,可在官方文档中查看:tox.readthedocs.io/en/latest/c…

3、tox 的插件化

除了自身强大的可配置性,tox 还具有很强的可扩展性,它是可插拔的(pluggable),围绕它产生了一个极为丰富的插件生态。

使用pip search tox ,可以看到数量众多的“tox-”开头的库,它们都是 tox 的插件包。其中不乏 setuptools、pipenv、conda、travis、pytest、docker 等被大家熟知的名字。

151d67e16b432695d0796dbf61abdc4.png

tox 开放了挺多的 API 接口,方便其他人定制开发插件。

c350b1e6d18b072fd2d6dfb0fce870d.png

4、tox 的工作流程

接下来看看 tox 是怎么运作的:

1e7c7dc98d0741d034f17ee31192a3b.png

其工作流程中主要的环节有:

  • 配置(从figuration):加载配置文件(如 tox.ini),解析命令行参数,读取系统环境变量等
  • 打包(packaging):可选的,对于带有 setup.py 文件的项目,可以在这步去生成它的源发行版
  • 创建虚拟环境:默认使用 virtualenv 来创建虚拟环境,并根据配置项中的“deps”安装所需的依赖项,然后执行配置好的命令(commands)
  • 报告(report):汇总所有虚拟环境的运行结果并罗列出来

5、小结

tox 本身定位是一个测试工具,它试图令 Pytho 测试工作变得自动化、标准化与流程化。但跟 unittest 和 pytest 这些测试框架不同,它作用的是代码层面之外的事情,是一种项目级的工具。因此,它需要跟这些测试框架相结合,或者同时处理多种自动化任务(如跑 pep8、测代码覆盖率、生成文档等等),这样才能更好地发挥它的价值。

它的一大特色在于创建/管理虚拟环境,但这只是为了方便测试而使用的手段,因此相比其它可管理虚拟环境的工具,如 Virtualenvwrapper、conda、pipenv、poetry,它在某些方面就存在着不足。

tox 还有强大的可配置性与丰富的插件支持,这使得它在运用上具有很大的可能性与自由度。因此,不少忠实开发者仍在持续地在使用它,比如,我刚翻译好的系列文章的作者就是它的维护者之一。

1be61bf92406692cca5cfbb01e2ab29.png

最后还需补充一点,tox 使用配置文件作驱动,但配置文件还是挺繁琐的,因此有人开发了一个跟 tox 相似的nox,使用 Python 文件来做配置。这个项目也很受欢迎,吸引了很多项目投入其门下,例如 pipx、urllib3、Salt 等等。


目录
相关文章
|
20天前
|
Python
自动化微信朋友圈:Python脚本实现自动发布动态
本文介绍如何使用Python脚本自动化发布微信朋友圈动态,节省手动输入的时间。主要依赖`pyautogui`、`time`、`pyperclip`等库,通过模拟鼠标和键盘操作实现自动发布。代码涵盖打开微信、定位朋友圈、准备输入框、模拟打字等功能。虽然该方法能提高效率,但需注意可能违反微信使用条款,存在风险。定期更新脚本以适应微信界面变化也很重要。
129 61
|
6天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
1天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
31 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
80 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
26天前
|
人工智能 Linux API
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
146 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
|
11天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
12天前
|
存储 安全 数据可视化
用Python实现简单的任务自动化
本文介绍如何使用Python实现任务自动化,提高效率和准确性。通过三个实用案例展示:1. 使用`smtplib`和`schedule`库自动发送邮件提醒;2. 利用`shutil`和`os`库自动备份文件;3. 借助`requests`库自动下载网页内容。每个案例包含详细代码和解释,并附带注意事项。掌握这些技能有助于个人和企业优化流程、节约成本。
44 3
|
1月前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
63 7
|
1月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
69 8
|
1月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
114 7

热门文章

最新文章