Python 依赖库管理哪家强?pipreqs、pigar、pip-tools、pipdeptree 任君挑选

简介: 用于项目依赖管理的工具有很多,本文主要围绕与 requirements.txt 文件相关的、比较相似却又各具特色的 4 个三方库

在 Python 的项目中,如何管理所用的全部依赖库呢?最主流的做法是维护一份“requirements.txt”,记录下依赖库的名字及其版本号。

那么,如何来生成这份文件呢?在上篇文章《由浅入深:Python 中如何实现自动导入缺失的库?》中,我提到了一种常规的方法:

pip freeze > requirements.txt
复制代码

这种方法用起来方便,但有几点不足:

  • 它搜索依赖库的范围是全局环境,因此会把项目之外的库加入进来,造成冗余(一般是在虚拟环境中使用,但还是可能包含无关的依赖库)
  • 它只会记录以“pip install”方式安装的库
  • 它对依赖库之间的依赖关系不做区分
  • 它无法判断版本差异及循环依赖等情况

可用于项目依赖管理的工具有很多,本文主要围绕与 requirements.txt 文件相关的、比较相似却又各具特色的 4 个三方库,简要介绍它们的使用方法,罗列一些显著的功能点。至于哪个是最好的管理方案呢?卖个关子,请往下看……

pipreqs

这是个很受欢迎的用于管理项目中依赖库的工具,可以用“pip install pipreqs”命令来安装。它的主要特点有:

  • 搜索依赖库的范围是基于目录的方式,很有针对性
  • 搜索的依据是脚本中所 import 的内容
  • 可以在未安装依赖库的环境上生成依赖文件
  • 查找软件包信息时,可以指定查询方式(只在本地查询、在 PyPi 查询、或者在自定义的 PyPi 服务)

基本的命令选项如下:

Usage:
    pipreqs [options] <path>
Options:
    --use-local           Use ONLY local package info instead of querying PyPI
    --pypi-server <url>   Use custom PyPi server
    --proxy <url>         Use Proxy, parameter will be passed to requests library. You can also just set the
                          environments parameter in your terminal:
                          $ export HTTP_PROXY="http://10.10.1.10:3128"
                          $ export HTTPS_PROXY="https://10.10.1.10:1080"
    --debug               Print debug information
    --ignore <dirs>...    Ignore extra directories
    --encoding <charset>  Use encoding parameter for file open
    --savepath <file>     Save the list of requirements in the given file
    --print               Output the list of requirements in the standard output
    --force               Overwrite existing requirements.txt
    --diff <file>         Compare modules in requirements.txt to project imports.
    --clean <file>        Clean up requirements.txt by removing modules that are not imported in project.
复制代码

其中需注意,很可能遇到编码错误:UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in 。需要指定编码格式“--encoding=utf8”。

在已生成依赖文件“requirements.txt”的情况下,它可以强行覆盖、比对差异以及清除不再使用的依赖项。

pigar

pigar 同样可以根据项目路径来生成依赖文件,而且会列出依赖库在文件中哪些位置使用到了。这个功能充分利用了 requirements.txt 文件中的注释,可以提供很丰富的信息。

598425dbe4916a25557a5db6386d554.png


pigar 对于查询真实的导入源很有帮助,例如bs4 模块来自beautifulsoup4 库,MySQLdb 则来自于MySQL_Python 库。可以通过“-s”参数,查找真实的依赖库。

$ pigar -s bs4 MySQLdb
复制代码

它使用解析 AST 的方式,而非正则表达式的方式,可以很方便地从 exec/eval 的参数、文档字符串的文档测试中提取出依赖库。

另外,它对于不同 Python 版本的差异可以很好地支持。例如,concurrent.futures 是 Python 3.2+ 的标准库,而在之前早期版本中,需要安装三方库futures ,才能使用它。pigar 做到了有效地识别区分。(PS:pipreqs 也支持这个识别,详见这个合入:github.com/bndr/pipreq…

pip-tools

pip-tools 包含一组管理项目依赖的工具:pip-compile 与 pip-sync,可以使用命令“pip install pip-tools”统一安装。它最大的优势是可以精准地控制项目的依赖库。

两个工具的用途及关系图如下:

a46e94600977e665e3eb279af9ceb0c.png

pip-compile 命令主要用于生成依赖文件和升级依赖库,另外它可以支持 pip 的“Hash-Checking Mode ”,并支持在一个依赖文件中嵌套其它的依赖文件(例如,在 requirements.in 文件内,可以用“-c requirements.txt”方式,引入一个依赖文件)。

它可以根据 setup.py 文件来生成 requirements.txt,假如一个 Flask 项目的 setup.py 文件中写了“install_requires=['Flask']”,那么可以用命令来生成它的所有依赖:

$ pip-compile
#
# This file is autogenerated by pip-compile
# To update, run:
#
#    pip-compile --output-file requirements.txt setup.py
#
click==6.7                # via flask
flask==0.12.2
itsdangerous==0.24        # via flask
jinja2==2.9.6             # via flask
markupsafe==1.0           # via jinja2
werkzeug==0.12.2          # via flask
复制代码

在不使用 setup.py 文件的情况下,可以创建“requirements.in”,在里面写入“Flask”,再执行“pip-compile requirements.in”,可以达到跟前面一样的效果。

pip-sync 命令可以根据 requirements.txt 文件,来对虚拟环境中进行安装、升级或卸载依赖库(注意:除了 setuptools、pip 和 pip-tools 之外)。这样可以有针对性且按需精简地管理虚拟环境中的依赖库。

另外,该命令可以将多个“*.txt”依赖文件归并成一个:

$ pip-sync dev-requirements.txt requirements.txt
复制代码

pipdeptree

它的主要用途是展示 Python 项目的依赖树,通过有层次的缩进格式,显示它们的依赖关系,不像前面那些工具只会生成扁平的并列关系。

311752fb552e5abad312cd8832c51ea.png

除此之外,它还可以:

  • 生成普遍适用的 requirements.txt 文件
  • 逆向查找某个依赖库是怎么引入进来的
  • 提示出相互冲突的依赖库
  • 可以发现循环依赖,进行告警
  • 生成多种格式的依赖树文件(json、graph、pdf、png等等)

它也有缺点,比如无法穿透虚拟环境。如果要在虚拟环境中工作,必须在该虚拟环境中安装 pipdeptree。因为跨虚拟环境会出现重复或冲突等情况,因此需要限定虚拟环境。但是每个虚拟环境都安装一个 pipdeptree,还是挺让人难受的。

好啦,4 种库介绍完毕,它们的核心功能都是分析依赖库,生成 requirements.txt 文件,同时,它们又具有一些差异,补齐了传统的 pip 的某些不足。

本文不对它们作全面的测评,只是选取了一些主要特性进行介绍,好在它们安装方便(pip install xxx),使用也简单,感兴趣的同学不妨一试。

更多丰富的细节,请查阅官方文档:

github.com/bndr/pipreq…

github.com/damnever/pi…

github.com/jazzband/pi…

github.com/naiquevin/p…


目录
相关文章
|
3天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
6天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
23 0
|
5天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
24 7
|
21天前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
5天前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
5天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
16 3
|
8天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
27 5
|
7天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
19 1
|
16天前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
30 3
|
5天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
25 0