Java并发编程学习系列三:辅助类与阻塞队列

简介: Java并发编程学习系列三:辅助类与阻塞队列

辅助类


CountDownLatch


减法计数器,位于 java.util.concurrent 包下,我们看一下关于它的定义。


1.jpg

主要方法有:

2.jpg


首先我们看一个简单的案例:


public class CountDownLatchDemo {
    public static void main(String[] args) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(6);
        for (int i = 0; i < 6; i++) {
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"get out");
                countDownLatch.countDown();//计数器减1
            },String.valueOf(i)).start();
        }
        //计算器归零,await被唤醒
        countDownLatch.await();//等待计数器归零,才向下继续执行
        System.out.println("end");
    }
}
复制代码


执行结果为:


0get out
1get out
2get out
3get out
5get out
4get out
end
复制代码


来个复杂点的,比如说有这样一个场景:一个大巴司机来接送一群工人去工作,只有当司机到了,工人们才可以出发准备去工作;同样的,只有等工人们都完成工作之后,司机才能接他们回去。转换为代码设计:


使用两倒计时锁:


  • 第一个是一个开始信号,防止任何工人进入,直到司机准备好才能进入;  
  • 第二个是一个完成信号,允许司机等待,直到所有的工人已经完成。
public class DriverTest {
    static final int N = 10;
    public static void main(String[] args) throws InterruptedException {
        CountDownLatch startSignal = new CountDownLatch(1);
        CountDownLatch doneSignal = new CountDownLatch(N);
        for (int i = 0; i < N; ++i){
            new Thread(new Worker(startSignal, doneSignal),"工人"+(i+1)+"号").start();
        }
        doSomethingElse1();            // don't let run yet
        startSignal.countDown();      // let all threads proceed
        doneSignal.await();           // wait for all to finish
        doSomethingElse2();
    }
    public static void doSomethingElse1() throws InterruptedException {
        TimeUnit.SECONDS.sleep(2);
        System.out.println("司机来送工人去工作");
    }
    public static void doSomethingElse2() throws InterruptedException {
        TimeUnit.SECONDS.sleep(1);
        System.out.println("司机来接工人回去");
    }
}
class Worker implements Runnable {
    private final CountDownLatch startSignal;
    private final CountDownLatch doneSignal;
    Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
        this.startSignal = startSignal;
        this.doneSignal = doneSignal;
    }
    public void run() {
        try {
            startSignal.await();
            doWork();
            doneSignal.countDown();
        } catch (InterruptedException ex) {} // return;
    }
    void doWork() throws InterruptedException {
        Thread.sleep(1000);
        System.out.println(Thread.currentThread().getName()+"开始工作......");
    }
}
复制代码


执行结果为:


司机来送工人去工作
工人4号开始工作......
工人6号开始工作......
工人8号开始工作......
工人3号开始工作......
工人7号开始工作......
工人9号开始工作......
工人2号开始工作......
工人1号开始工作......
工人10号开始工作......
工人5号开始工作......
司机来接工人回去
复制代码

CyclicBarrier



加法计数器,与 CountDownLatch 作用相反。


3.jpg

主要方法有:

4.jpg


public class CyclicBarrierDemo {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(7,()->{
            System.out.println("召唤神龙");
        });
        for (int i = 0; i < 7; i++) {
            final int temp = i+1;
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"收集"+temp+"个龙珠");
                try {
                    cyclicBarrier.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }).start();
        }
    }
}
复制代码


Semaphore



计数器信号量。


5.jpg


以下是个抢车位的案例,假设有6个人去抢3个车位,谁先抢到谁占用,直到离开下一个人再去抢用。


public class SemaphoreDemo {
    public static void main(String[] args) {
        Semaphore semaphore = new Semaphore(3);
        for (int i = 0; i < 6; i++) {
            new Thread(()->{
                try {
                    semaphore.acquire();
                    System.out.println(Thread.currentThread().getName()+"抢到了车位!");
                    TimeUnit.SECONDS.sleep(2);
                    System.out.println(Thread.currentThread().getName()+"离开了车位!");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }finally {
                    semaphore.release();
                }
            }).start();
        }
    }
}
复制代码


semaphore.acquire() 方法表示从该信号量获取许可证,假设已经满了,则等待,直到有许可证被释放。


semaphore.release() 方法表示释放许可证,将其返回到信号量。同时唤醒那些还在等待的线程。


作用:多个共享资源互斥的使用,并发限流,控制最大线程数。


阻塞队列

BlockingQueue


概念


以下是官方文档对于阻塞队列的介绍:

6.jpg


我们来看一下 BlockingQueue 的接口图:


7.jpg


  • ArrayBlockingQueue: 由 数 组 结 构 组 成 的 有 界 阻 塞 队 列 。
  • LinkedBlockingQueue:由链表结构组成的有界(默认值为:integer.MAX_VALUE)阻塞队列。
  • PriorityBlockingQueue:支持优先级排序的无界阻塞队列
  • DelayQueue:使用优先级队列实现的延迟无界阻塞队列。
  • SynchronousQueue:不存储元素的阻塞队列,也即单个元素的队列。
  • LinkedTransferQueue:由链表组成的无界阻塞队列。
  • LinkedBlockingDeque:由链表组成的双向阻塞队列。


阻塞队列是一个队列,在数据结构中起的作用如下图:


8.jpg


当队列是空的,从队列中获取元素的操作将会被阻塞。直到其他线程往空的队列插入新的元素。


当队列是满的,从队列中添加元素的操作将会被阻塞。直到其他线程从队列中移除一个或多个元素或者完全清空,使队列变得空闲起来并后续新增。


作用


在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤起。


为什么需要 BlockingQueue?


好处是我们不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue 都给你一手包办了。


在 concurrent 包发布以前,在多线程环境下,我们每个程序员都必须自己去控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。


核心方法


常用 API

9.jpg


对上述内容的详细解释如下:


10.jpg


我们对上述内容进行代码展示,首先是抛出异常情况下的插入和移除方法使用:


public class BlockingQueueTest {
    public static void main(String[] args) throws InterruptedException {
        ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue(3);
        //java.lang.IllegalStateException: Queue full
        System.out.println(blockingQueue.add("A"));
        System.out.println(blockingQueue.add("B"));
        System.out.println(blockingQueue.add("C"));
//        System.out.println(blockingQueue.add("D")); //此时队列已满,报错 java.lang.IllegalStateException: Queue full
        System.out.println(blockingQueue.remove());
        System.out.println(blockingQueue.remove());
        System.out.println(blockingQueue.remove());
//        System.out.println(blockingQueue.remove()); //队列已空,报错java.util.NoSuchElementException
    }
}
复制代码


返回特殊值


public class BlockingQueueTest {
    public static void main(String[] args) throws InterruptedException {
        ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue(3);
        System.out.println(blockingQueue.offer("A"));
        System.out.println(blockingQueue.offer("B"));
        System.out.println(blockingQueue.offer("C"));
        System.out.println(blockingQueue.offer("D"));//队列已满,插入失败,返回false
        System.out.println(blockingQueue.poll());
        System.out.println(blockingQueue.poll());
        System.out.println(blockingQueue.poll());
        System.out.println(blockingQueue.poll());//队列已空,返回null
    }
}
复制代码


一直阻塞


public class BlockingQueueTest {
    public static void main(String[] args) throws InterruptedException {
        ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue(3);
        blockingQueue.put("A");
        blockingQueue.put("B");
        blockingQueue.put("C");
//        blockingQueue.put("D"); //队列已满,会一直阻塞下去
        System.out.println(blockingQueue.take());
        System.out.println(blockingQueue.take());
        System.out.println(blockingQueue.take());//返回正常值
//        System.out.println(blockingQueue.take());//队列已空,会一直阻塞
    }
}
复制代码


超时等待


public class BlockingQueueTest {
    public static void main(String[] args) throws InterruptedException {
        ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue(3);
        blockingQueue.offer("A");
        blockingQueue.offer("B");
        blockingQueue.offer("C");
//        blockingQueue.offer("D",2, TimeUnit.SECONDS);//队列已满,则等待2s后结束
        blockingQueue.poll();
        blockingQueue.poll();
        blockingQueue.poll();
//        blockingQueue.poll(3,TimeUnit.SECONDS); //队列已空,等待3s后结束
    }
}
复制代码


SynchronousQueue


11.jpg


同步队列 SynchronousQueue 没有容量。


与其他的 BlockingQueue 不同,SynchronousQueue 是一个不存储元素的 BlockingQueue 。每一个 put 操作必须要等待一个 take 操作,否则不能继续添加元素,反之亦然。


public class SynchronousQueueDemo {
    public static void main(String[] args) {
        BlockingQueue<String> blockingQueue = new SynchronousQueue<>();//同步队列
        new Thread(()->{
            try {
                System.out.println(Thread.currentThread().getName()+"put 1");
                blockingQueue.put("1");
                System.out.println(Thread.currentThread().getName()+"put 2");
                blockingQueue.put("2");
                System.out.println(Thread.currentThread().getName()+"put 3");
                blockingQueue.put("3");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        },"T1").start();
        new Thread(()->{
            try {
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName()+"get data:"+blockingQueue.take());
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName()+"get data:"+blockingQueue.take());
                TimeUnit.SECONDS.sleep(3);
                System.out.println(Thread.currentThread().getName()+"get data:"+blockingQueue.take());
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        },"T2").start();
    }
}
复制代码


执行结果为:


T1put 1
T2get data:1
T1put 2
T2get data:2
T1put 3
T2get data:3



目录
相关文章
|
21小时前
|
JavaScript 小程序 Java
基于java的少儿编程网上报名系统
基于java的少儿编程网上报名系统
6 2
|
22小时前
|
存储 安全 算法
掌握Java并发编程:Lock、Condition与并发集合
掌握Java并发编程:Lock、Condition与并发集合
5 0
|
1天前
|
Java 编译器 开发者
Java并发编程中的锁优化策略
【5月更文挑战第8天】在Java并发编程中,锁是实现线程同步的关键机制。为了提高程序的性能,我们需要对锁进行优化。本文将介绍Java并发编程中的锁优化策略,包括锁粗化、锁消除、锁降级和读写锁等方法,以帮助开发者提高多线程应用的性能。
|
2天前
|
Java 开发者
在Java中,接口和超类在多态性中扮演着重要的角色
Java中的接口和超类支持多态性,接口作为规范,允许多继承和回调机制;超类提供基类,实现代码重用和方法重写,两者共同促进代码的灵活性和可维护性。
23 10
|
2天前
|
安全 Java 开发者
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第7天】在Java中,多线程编程是提高应用程序性能和响应能力的关键。本文将深入探讨Java并发编程的核心概念,包括线程安全、同步机制以及性能优化策略。我们将通过实例分析,了解如何避免常见的并发问题,如死锁、竞态条件和资源争用,并学习如何使用Java提供的并发工具来构建高效、可靠的多线程应用。
|
2天前
|
Java
Java并发Futures和Callables类
Java程序`TestThread`演示了如何在多线程环境中使用`Futures`和`Callables`。它创建了一个单线程`ExecutorService`,然后提交两个`FactorialService`任务,分别计算10和20的阶乘。每个任务返回一个`Future`对象,通过`get`方法获取结果,该方法会阻塞直到计算完成。计算过程中模拟延迟以展示异步执行。最终,打印出10!和20!的结果。
|
2天前
|
缓存 Java
Java并发编程:深入理解线程池
【5月更文挑战第7天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将了解线程池的基本概念,以及如何使用Java的Executor框架来创建和管理线程池。此外,我们还将讨论线程池的优点和缺点,以及如何选择合适的线程池大小。最后,我们将通过一个示例来演示如何使用线程池来提高程序的性能。
|
5月前
|
Java
多线程与并发,Java中介绍一下Thread类和Runnable接口的区别。
多线程与并发,Java中介绍一下Thread类和Runnable接口的区别。
33 1
|
5月前
|
Java Unix 程序员
java 8 新特性讲解Optional类--Fork/Join 框架--新时间日期API--以及接口的新特性和注解
java 8 新特性讲解Optional类--Fork/Join 框架--新时间日期API--以及接口的新特性和注解
63 1
|
15天前
|
Java
一文搞清楚Java中的包、类、接口
包、类、接口、方法、变量、参数、代码块,这些都是构成Java程序的核心部分,即便最简单的一段代码里都至少要包含里面的三四个内容,这两天花点时间梳理了一下,理解又深刻了几分。
32 10