阿里云机器学习技术分享1——图像识别之TensorFlow实现方法【视频+PPT】

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: 阿里云AI之图像识别技术是如何实现的!?视频+PPT干货奉上 讲师简介:赵昆 阿里巴巴机器学习技术专家 欢迎加入阿里云机器学习大家庭,**钉钉群:11768691** , QQ群:567810612 一、阿里云机器学习之图像识别实践-基础篇: 观看视频:http://cloud.

阿里云AI之图像识别技术是如何实现的!?视频+PPT干货奉上

讲师简介:赵昆 阿里巴巴机器学习技术专家

欢迎加入阿里云机器学习大家庭,钉钉群:11768691QQ群:567810612

一、阿里云机器学习之图像识别实践-基础篇:
观看视频:http://cloud.video.taobao.com/play/u/2339185383/p/1/e/6/t/1/56328343.mp4


二、阿里云机器学习之图像识别实践-高级篇:
观看视频:http://cloud.video.taobao.com/play/u/2527642419/p/1/e/6/t/1/57186315.mp4


基础篇PPT
image


image


image


image


image


image


image


image


image


image


image


image


image


image


image


image


高级篇PPT
PPT如下:

image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image
**
image

相关文章
|
4月前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
3月前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
637 95
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
194 3
|
4月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
211 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
132 5
|
6月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
275 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
5月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
113 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
6月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI的魔法:机器学习在图像识别中的应用
【9月更文挑战第24天】当AI技术遇到图像识别,就像是打开了新世界的大门。本文将深入浅出地介绍机器学习在图像识别领域的应用,通过实例和代码展示如何让机器“看懂”图片。让我们一起探索AI的魔法,开启一段科技与创新的旅程!
|
7月前
|
机器学习/深度学习 数据采集 TensorFlow
使用TensorFlow进行模型训练:一次实战探索
【8月更文挑战第22天】本文通过实战案例详解使用TensorFlow进行模型训练的过程。首先确保已安装TensorFlow,接着预处理数据,包括加载、增强及归一化。然后利用`tf.keras`构建卷积神经网络模型,并配置训练参数。最后通过回调机制训练模型,并对模型性能进行评估。此流程为机器学习项目提供了一个实用指南。
|
7月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
92 0