百度马艳军:实现AI技术自立自强,国产深度学习框架面临三大难题

简介: 百度马艳军:实现AI技术自立自强,国产深度学习框架面临三大难题

3 月 31 日 ,百度 AI 开放日《AI呀,我去!》举办了第五期线下活动。活动现场,百度 AI 技术生态总经理马艳军博士系统分享了深度学习领域的竞争格局、中国自研深度学习框架的发展突破和未来趋势 —— “深度学习框架在人工智能技术体系中,处于贯通上下的腰部位置,它下接芯片、上承应用。”

image.png

(AI技术生态总经理 马艳军博士现场分享)

与 PC 时代的操作系统 Windows、移动互联网时代的 IOS 和安卓类似,深度学习框架是智能时代的操作系统,它和芯片一起共同构成了人工智能的基础设施,深度学习框架的重要性不亚于芯片。在“十四五”规划中,“深度学习框架”被列入“新一代人工智能”领域,成为国家重点支持的前沿创新技术。

在深度学习框架这一 AI 核心技术上,即便面临门槛高、生态建设难等困难,中国企业也必须掌握主动权。截至 2021 年 12 月,百度“飞桨”深度学习平台,已经冲破了过去在中国市场上谷歌、Facebook 的垄断局面,成为中国深度学习平台综合市场份额第一。当前,人工智能进入大规模落地阶段,越来越多的开发者和企业正在基于国产深度学习平台开展智能化转型应用。

中国产业智能化转型如何实现技术突围?

国产深度学习框架面临三大难点

深度学习框架正在让 AI 应用变得更简单。基于深度学习框架,企业可以根据自身行业的特点和场景需要,更快更便捷地开发AI应用,不再需要从 0 到 1 地搭建地基,极大提升了产业智能化的效率和水平。

不论从 AI 技术发展还是产业应用来说,深度学习框架都处于非常核心的位置。自 2013 年开始,全球人工智能学术界以及产业界各研发主体陆续开源旗下自主研发深度学习框架,并以框架为核心搭建人工智能开放平台,推动人工智能产业生态的建立。以 Google 的 TensorFlow、 Facebook 的 PyTorch 两款深度学习框架为代表的深度学习框架起步早、发展快,占据了业界主导地位。

早在 2017 年,国家发改委正式批复,筹建深度学习技术及应用国家工程实验室,中国深度学习框架逐步从国际竞争中突围。2021 年,IDC 报告显示,中国首个开源开放的深度学习平台百度“飞桨”,在中国深度学习市场中的综合份额已超越其他国际巨头,成为中国第一。这使得我国人工智能技术开发者和使用者不必依赖于国外平台,同时还可进一步依托国产平台培育产业生态。

然而,中国自研深度学习框架想要在国际竞争中取得领先,还有很长的路要走。马艳军指出,当前中国深度学习框架的发展仍需突破三大关键点:技术实力、功能体验、生态规模。

首先,技术创新方面,深度学习框架的研发需要人工智能领域底层技术人才,我国在这一领域的储备仍有不足。

其次,在应用体验方面,由于中国是全球产业链最为完备的国家,产业体系复杂,中小企业转型需求迫在眉睫。但在应用 AI、促进企业智能化转型的过程中,仅一项技术应用,从实验室到产业落地就至少需要 3-6 个月时间,一个低门槛甚至零门槛的开发平台极为重要。

在开发应用生态方面,深度学习是一个典型的共创型技术领域,只有构建了自己的生态才实现持续迭代和发展。然而构建生态周期长、成本高,而且只有当国产框架的技术和功能体验足以满足开发者的需求时,才有机会培育起自主创新的AI开发应用生态。

深度学习框架或将决定未来 5 年 AI 产业格局

百度飞桨已成为中国市场第一

在全球深度学习领域,国外开发者主要基于 TensorFlow、PyTorch、MxNet 等国外深度学习框架进行人工智能算法、模型的开发、训练与部署。中国人工智能企业开发的深度学习框架在社区繁荣度、开发者数量等方面还存在一定差距。

不过,以飞桨为代表的中国深度学习框架正在发展成为更适合产业需求、更受中国开发者欢迎的开源开放平台。一方面,中国深度学习框架不断扎根实际应用场景,牢牢抓住了开发者和企业智能化升级的需求,降低人工智能技术的应用门槛。另一方面,中国深度学习框架与更多芯片厂商深度适配并融合,形成了软硬协同优势。

“中国企业和产业有自身的特点,例如在工业、农业、物流、金融等领域,中国企业对AI技术的需求也有其独特性。国产深度学习框架,如果既能在功能上大量满足中国产业需求,同时又低门槛、简单易开发,那将有很大机会在产业级落地上实现弯道超车。”马艳军表示。

以百度飞桨为例,经过对大量真实生产场景的反复打磨,已经能够使传统企业在智能化转型中实现高性能开发、大规模训练、不同场景和不同软硬件平台敏捷部署。更重要的是,飞桨已经和包括百度昆仑芯、华为昇腾、英特尔、英伟达在内的22家国内外硬件厂商,完成了 31 种芯片的适配和优化,覆盖全部国内外主流芯片,最大程度帮助企业降本增效。

image.png

(飞桨与芯片适配情况概览)

截至 2021 年 12 月,飞桨已经冲破了过去在中国市场上谷歌、Facebook 的垄断局面,成为中国深度学习平台综合市场份额第一。目前,飞桨平台已经汇聚了406万开发者,创建了 47.6 万个 AI 模型,累计服务 15.7 万企事业单位,覆盖工业、农业、医疗、城市管理、交通、金融等领域。

image.png

(飞桨全景图)

随着当前中国产业数字化转型的不断深入,中国深度学习框架的生态布局正在工业、交通、能源、城市等千行百业“开花结果”。以智慧交通领域为例,高铁接触网挂异物导致列车晚点的事件时有发生,一块小小的异物,就可能影响上百万人的出行。此前,依靠传统的人工巡检需要每天每条线路安排 10 到 20 名轨道检修工,不但人工成本高,还很难保证及时地检测与处理。经过一些尝试后,成都国铁最终采用飞桨研发了一套“轨道在线智能巡检系统”,实现了对轨道缺陷全天候的智能判断。一套飞桨智能巡检系统,让城市的守护者不必再披星戴月。

马艳军介绍称,随着中国深度学习框架的开源开放以及更大规模的产业应用落地,未来中国深度学习框架的应用场景将会更加丰富,成本和门槛也会进一步降低。同时,深度学习框架将与科学计算、量子计算、生命科学等更多前沿产业进行融合创新。

不容忽视的是,中国深度学习框架仍面临着适配部署复杂、应用开发困难等难题,构筑自主可控的深度学习和人工智能产业生态道阻且长,但它或将决定未来 5 年 AI 技术格局和产业水平。马艳军表示:“尽管深度学习框架属于高投入、长周期、抢生态的竞争,但已经得到国家和企业的战略性支持,是开启下一个 AI 时代的钥匙。“

相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
52 10
|
2天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
24 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
2天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
10天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
2天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
27 14
|
3天前
|
传感器 机器学习/深度学习 人工智能
AI视频监控卫士技术介绍:智能化河道管理解决方案
AI视频监控卫士系统,通过高清摄像头、智能传感器和深度学习技术,实现河道、水库、城市水务及生态保护区的全天候、全覆盖智能监控。系统能够自动识别非法行为、水质变化和异常情况,并实时生成警报,提升管理效率和精准度。
30 13
|
2天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
14 6
|
1天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
8天前
|
机器学习/深度学习 人工智能 监控
AI视频监控技术的核心优势与实践
AI视频监控技术结合了计算机视觉、深度学习和大数据分析,能够实时分析监控画面,识别异常行为和场景变化。其核心在于从“被动记录”转型为“主动识别”,提升监控效率并减少安全隐患。主要应用场景包括泳池管理、健身器械区域、人员密度预警和异常事件检测。系统架构支持多种摄像头设备,采用边缘计算和Docker部署,具备实时性、高准确率和扩展性等优势。未来将优化复杂场景适应性和实时计算负载,进一步提高系统性能。
|
11天前
|
机器学习/深度学习 人工智能 边缘计算
24/7全时守护:AI视频监控技术的深度实现与应用分享
本文深入解析了AI视频监控系统在车间安全领域的技术实现与应用,涵盖多源数据接入、边缘计算、深度学习驱动的智能分析及高效预警机制,通过具体案例展示了系统的实时性、高精度和易部署特性,为工业安全管理提供了新路径。
下一篇
DataWorks