鉴定AlexNet、ZFNet、VGG、GoogLeNet等热门卷积神经网络

简介: 本文旨在解析前几年部分经典神经网络的实现结构,需要一些优化算法、全神经网络等储备知识,有不明白的可以向我提问。

经典网络解析

本文旨在解析前几年部分经典神经网络的实现结构,需要一些优化算法、全神经网络等储备知识,有不明白的可以向我提问。

以下介绍的神经网络大体相似,区别只在神经网络的步步优化方面,比如从大卷积核到多次小卷积核卷积、复杂特征卷积核提取增多等等。

AlexNet神经网络

AlexNet神经网络是神经网络逐渐从人们视野中淡化再到复出的一个转折点,它是2012年ImageNet视觉识别挑战赛的冠军模型

主体贡献

  • 提出了一种卷积层加全连接层的卷积神经网络结构(让神经网络从人们视野中复出)
  • 首次使用ReLU函数做为神经网络的激活函数(不会因为输入值的大小而输出接近0或1而断掉特征数值的传递)
  • 首次提出Dropout正则化来控制过拟合(解决了神经网络参数多而容易过拟合的缺点)
  • 使用加入动量的小批量梯度下降算法加速了训练过程的收敛(降低计算量,在优化参数上更快找到最低点)
  • 使用数据增强策略极大地抑制了训练过程的过拟合(数据增强比如说图像反转、放大缩小等,增加样本量)
  • 利用了GPU的并行计算能力,加速了网络的训练与推断(利用显卡优秀的矩阵计算能力进行实现模型)

神经网络模型

CONV1:96个11 * 11卷积核,步长为4,无零填充

MAX POOL1:窗口大小3 * 3,步长为2 降低图像尺寸,重叠有助于对抗过拟合

NORM1:现在不怎么用了,不做解释

CONV2:256个5 * 5卷积核,步长为1,使用零填充p=2

CONV3、CONV4:384个卷积核,步长为1,使用零填充p=1

CONV5:256个3 * 3卷积核,步长为1,使用零填充

卷积神经网络输出为6 6 256,以此输入到全连接神经网络中

  • 用于提取图像特征的卷积层以及用于分类的全连接层是同时学习的

重要技巧:

  • Dropout策略防止过拟合
  • 使用加入动量的随机梯度下降算法,加速收敛
  • 验证集损失不下降时,手动降低10倍的学习率
  • 采用样本增强策略增加训练样本的数量,防止过拟合
  • 集成多个模型,进一步提高精度

理解卷积层

卷积层就像各种偏导核一样,从多种偏导核中提取偏导核对应的特征,不同的是卷积层对应的是高级复杂的特征,甚至不能称之为特征而是结构。

ZFNet神经网络

ZFNet神经网络与AlexNet神经网络结构基本一致

主要改进:

  • 将第一个卷积层的卷积核大小改为了7 * 7
  • 将第二、第三个卷积层的卷积步长都设置为2
  • 增加了第三、第四个卷积层的卷积核个数

改进理解:

  • 减少第一层的卷积核大小,可以提取到更加细致的特征
  • 步长设置为2,多次分批缓慢降低图像大小,不会损失过多信息
  • 增加第三层第四层卷积核,后层的卷积核以及存在语义信息,个数增多能够学习更多复杂语义特征

VGG神经网络

主要以VGG16为例讲解

模型特征:

主要改进:

  • 使用尺度更小的3 * 3卷积核串联来获取更大的感受野
  • 放弃使用11 11和5 5这样的大尺寸卷积核
  • 深度更深、非线性更强,网络参数也越少
  • 去掉了AlexNet中的局部响应归一化层

改进优势:

  • 以多个小卷积核多次卷积代替大卷积核一次卷积,二者的感受野相同但是非线性更强、深度更深且计算量少
  • 池化操作后增加卷积核一倍,池化降低图像大小而卷积核个数有助于学习到更多特征,一增一减平衡识别精度、计算开销提升网络性能

GoogLeNet神经网络

创新改进:

  • 提出了一种Inception结构,它能保留输入信号中的更多特征信息
  • 去掉了AlexNet的前两个全连接层,并采用了平均池化,这一设计使得 GoogLeNet只有500万参数,比AlexNet少了12倍
  • 在网络的中部引入了辅助分类器,克服了训练过程中的梯度消失问题

改进优势:

  • 改变串行结构,串行因为结构后一卷积层只能接受前一卷积层的输出,无可避免会丢失信息,而并行结构分别以1 1卷积核、3 3卷积核、5 * 5卷积核和增强池化层为输入,同时兼顾各式卷积的特征结果提取特征。
  • 标记的红框1 1卷积核作用只为减少运算量,以多个1 1卷积核代替直接使用图像,以卷积核个数维度代替图像大小值,可大量减少计算量,层数更深、 参数更少、 计算效率更高、非线性表达能力也更强
  • 辅助分类器作用:避免激活函数梯度消失问题,使得梯度回传更好训练模型
目录
相关文章
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
3月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
453 11
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
3月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
287 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
339 7
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
6月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。

热门文章

最新文章