C++核心编程之内存分区模型,巧妙理解内存四区及new关键字的使用

简介: C++核心编程之内存分区模型,巧妙理解内存四区及new关键字的使用

内存四区


下文有内存四区的详细介绍及作用


image.png


编辑

内存四区的意义:不同区域存放的数据赋予不同的生命周期,让我们的编程方式更灵活


程序运行前


在程序编译后,生成了可执行程序.exe,未执行程序前分为两个区域为代码区和全局区


代码区


作用:


存放CPU执行的机器指令(二进制代码,由操作系统进行管理)

代码区是共享的,共享的目的是对于频繁被执行的程序,只需要再内存中有一份代码即可

代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令


全局区


全局变量和静态常量存放在此

全局区还包含了常量区,字符串常量和其他常量也存放在此

该区域的数据在程序结束后由操作系统释放


代码示例:
#include<iostream>
using namespace std;
//全局变量
int g_a = 10;
int g_b = 10;
const int c_g_a=10;
const int c_g_b=10;
int main()
{
        //创建普通局部变量
        int a = 10;
        int b = 10;
        cout << "局部变量a的地址为:" << (int)& a << endl;
        cout << "局部变量b的地址为:" << (int)& b << endl;
        int c_l_a = 10;
        int c_l_b = 10;
        cout << "局部常量c_l_a的地址为:" << (int)&c_l_a << endl;
        cout << "局部变量c_l_b的地址为:" << (int)&c_l_b << endl;
        cout << "全局变量g_a的地址为:" << (int)&g_a << endl;
        cout << "全局变量g_b的地址为:" << (int)&g_b << endl;
        //静态变量
        static int s_a = 10;
        static int s_b = 10;
        cout << "静态变量s_a的地址为:" << (int)&s_a << endl;
        cout << "静态变量s_b的地址为:" << (int)&s_b << endl;
        //字符串常量
        cout << "字符串常量的地址为:" << (int)&"Hello World" << endl;
        //const 修饰的变量
        //const 修饰的全局变量、const修饰的局部变量
        cout << "全局常量c_g_a的地址为:" << (int)&c_g_a << endl;
        cout << "全局常量c_g_b的地址为:" << (int)&c_g_b << endl;
}

 各变量地址的关系:


image.png


 从运行效果可以清楚的看到带全局的变量地址所占空间相近,而局部的地址相差就比较远了,看下我做的图示总结:


image.png


程序运行后


栈区


由编译器自动分配释放,存放函数的参数值,局部变量等

注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放


#include<iostream>
using namespace std;
int* func1(int b)//返回值类型为 int *,所以return一个地址才合法
{//形参数据也会开辟到栈区
        b = 100;
        int a = 10;//局部变量,存放在栈区,栈区的数据在函数执行完成后自动释放
        return &a;//返回局部变量的地址
}
int main()
{
        //接受func1函数的返回值
        int* p = func1(10);
        cout << *p << endl;//第一次数据正常,因为编译器会自动保留
        cout << *p << endl;//第二次往后是随机数,该地址被释放
        cout << *p << endl;
}


tips:这里输出只有一个10, 剩下输出结果无法猜测,因为返回的地址已经被编译器释放掉


堆区


由程序员分配释放,若程序员不释放,程序结束时由操作系统回收

C++中主要利用new在栈区开辟内存


示例:


int * func()
{
        //利用new 关键字把栈开辟到堆区
        //指针 *p实质上也是栈区数据,指针保存的数据放到堆区
        int* p = new int (10);
        return p;
}
int main()
{
        int* a = func();
        cout << *a << endl;//无论输出多少次,都能输出a的值
        cout << *a << endl;
        cout << *a << endl;
}

 这里不同于栈区的时,无论输出多少次*a,都是结果十,下面来张图助理解:


image.png


  主函数中用*a作为*p的返回值,a的地址为0x0011,保存的数据为10,这是数据保存在堆中,除非程序结束,该地址都不会被释放。


new关键字


new的基本语法


开辟:

数据类型 + 指针变量  = new +相同数据类型 +(赋值)

这样可在堆区开辟数据,作为栈区函数返回值也不会被编译器自动释放


删除:

delete 变量地址

堆区数据由管理员开辟或释放,如果想要释放数据就利用delete关键字


利用new开辟数组


示例:int* Array = new int[n];  和基本语法相比就是()变成了[],并且里面可以存放常量或者变量,当我们想控制数组长度的时候,这也是自定义的一种方法。让 n 等于10,那么数组Array[]的长度为十,我们可以用随机数来给数组赋值。释放数组也是利用delete关键字,例如 delete[] Array; 删除数组加[]放在数组名前。


例如:


void test02(int *Array)
{
        srand((unsigned int)time(NULL));
        for (int i = 0; i < 10; i++)
        {
               Array[i] = rand() % 20 + 1;
        }
        for (int i = 0; i < 10; i++)
        {
               cout << Array[i] << " ";
        }
}
int main()
{
    int *Array = new int [10];
    test02(Array);
}

 附带个运行图:


image.png


image.pngimage.pngimage.pngimage.png

目录
打赏
0
0
0
0
88
分享
相关文章
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
71 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
551 67
什么是内存泄漏?C++中如何检测和解决?
大家好,我是V哥。内存泄露是编程中的常见问题,可能导致程序崩溃。特别是在金三银四跳槽季,面试官常问此问题。本文将探讨内存泄露的定义、危害、检测方法及解决策略,帮助你掌握这一关键知识点。通过学习如何正确管理内存、使用智能指针和RAII原则,避免内存泄露,提升代码健壮性。同时,了解常见的内存泄露场景,如忘记释放内存、异常处理不当等,确保在面试中不被秒杀。最后,预祝大家新的一年工作顺利,涨薪多多!关注威哥爱编程,一起成为更好的程序员。
C++构建 GAN 模型:生成器与判别器平衡训练的关键秘籍
生成对抗网络(GAN)是AI领域的明星,尤其在C++中构建时,平衡生成器与判别器的训练尤为关键。本文探讨了GAN的基本架构、训练原理及平衡训练的重要性,提出了包括合理初始化、精心设计损失函数、动态调整学习率、引入正则化技术和监测训练过程在内的五大策略,旨在确保GAN模型在C++环境下的高效、稳定训练,以生成高质量的结果,推动AI技术的发展。
83 10
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
533 13
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
211 4
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
1103 5
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器2
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
83 2
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
107 11
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等