RabbitMQ名词解释

简介: RabbitMQ是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑RabbitMQ是一个快递站,一个快递员帮你传递快件。RabbitMQ与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据。

RabbitMQ的概念



RabbitMQ是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑RabbitMQ是一个快递站,一个快递员帮你传递快件。RabbitMQ与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据。


 四大核心概念



生产者


产生数据发送消息的程序是生产者


交换机


交换机是RabbitMQ非常重要的一个部件,一方面它接收来自生产者的消息,另一方面它将消息推送到队列中。交换机必须确切知道如何处理它接收到的消息,是将这些消息推送到特定队列还是推送到多个队列,亦或者是把消息丢弃,这个得有交换机类型决定


队列


队列是RabbitMQ内部使用的一种数据结构,尽管消息流经RabbitMQ和应用程序,但它们只能存储在队列中。队列仅受主机的内存和磁盘限制的约束,本质上是一个大的消息缓冲区。许多生产者可以将消息发送到一个队列,许多消费者可以尝试从一个队列接收数据。这就是我们使用队列的方式


消费者


消费与接收具有相似的含义。消费者大多时候是一个等待接收消息的程序。请注意生产者,消费者和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又是可以是消费者。


RabbitMQ核心部分



0f52caee6329422198fa553eb8ab8ce9.png58af8f489e1d45fb91bb67f89141e830.png


各个名词介绍



Broker:接收和分发消息的应用,RabbitMQ Server就是Message Broker


Virtual host:出于多租户和安全因素设计的,把 AMQP 的基本组件划分到一个虚拟的分组中,类似于网络中的namespace概念。当多个不同的用户使用同一个RabbitMQ server提供的服务时,可以划分出多个vhost,每个用户在自己的 vhost 创建 exchange/queue 等


Connection:publisher/consumer和broker之间的TCP连接

Channel:如果每一次访问 RabbitMQ 都建立一个Connection,在消息量大的时候建立 TCPConnection的开销将是巨大的,效率也较低。Channel是在connection内部建立的逻辑连接,如果应用程序支持多线程,通常每个thread创建单独的channel进行通讯,AMQP method包含了channel id 帮助客户端和message broker 识别 channel,所以channel之间是完全隔离的。Channel作为轻量级的


Connection极大减少了操作系统建立TCP connection的开销

(个人理解相当于数据库连接池那玩意)


Exchange:message 到达 broker 的第一站,根据分发规则,匹配查询表中的 routing key,分发消息到queue 中去。常用的类型有:direct (point-to-point), topic (publish-subscribe) and fanout (multicast)


Queue:消息最终被送到这里等待consumer取走

Binding:exchange和queue之间的虚拟连接,binding中可以包含routing key,Binding信息被保存到exchange中的查询表中,用于message的分发依据


相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
存储 Java
Java Scanner类详解与应用
Java Scanner类详解与应用
446 0
|
4月前
|
传感器 数据采集 算法
《边缘算力困局突破:智能体模型动态调度全解析》
边缘设备如智能摄像头、传感器等在生活和生产中广泛应用,但其算力有限,难以高效运行复杂智能体模型。为解决这一问题,动态调度策略应运而生。通过任务优先级调度、模型分区与动态加载以及基于网络状态的调度,可灵活调整资源分配,优化任务执行效率。这些策略确保高优先级任务优先处理,按需加载模型模块,并根据网络状况合理分配计算任务。然而,动态调度面临实时监测和额外开销等挑战,需要优化算法和技术支持。成功实现动态调度将推动边缘计算在自动驾驶、智能安防、医疗等领域发挥更大潜力,带来深远变革。
183 6
|
6月前
|
机器学习/深度学习 人工智能 SDN
《重塑数据中心网络架构,迎接人工智能算力浪潮》
在人工智能快速发展的背景下,数据中心作为算力核心,其网络架构优化至关重要。传统三层架构因延迟高、扩展性差已难以满足AI需求。叶脊架构通过扁平化设计减少延迟并提升扩展性,高速网络技术(如100Gbps/400Gbps以太网)提供更大带宽,SDN与网络虚拟化实现灵活资源分配,优化流量管理进一步提高效率。未来,量子通信和边缘计算等技术将推动数据中心网络持续演进,助力AI算力提升,为社会带来更多变革。
255 9
|
监控 安全 Linux
【专栏】Linux中六个常用的网络命令:ping、traceroute、netstat、nmap、ifconfig和ip
【4月更文挑战第28天】本文介绍了Linux中六个常用的网络命令:ping、traceroute、netstat、nmap、ifconfig和ip,以及它们在测试网络连通性、追踪路由、查看网络状态、安全扫描和接口配置等场景的应用。通过学习和运用这些命令,系统管理员和网络爱好者能更有效地诊断和管理网络问题,确保网络稳定运行。
879 0
|
数据可视化 Python
Python模型评估与选择:面试必备知识点
【4月更文挑战第17天】本文深入探讨了Python模型评估与选择在面试中的关键点,包括性能度量、过拟合与欠拟合识别、模型比较与选择、模型融合和偏差-方差权衡。强调了避免混淆评估指标、忽视模型验证和盲目追求高复杂度模型的常见错误,并提供相关代码示例,如交叉验证、网格搜索和超参数调优。通过理解这些概念和技巧,可在面试中展示出色的数据科学能力。
362 12
|
分布式计算 大数据 数据处理
「大数据」Kappa架构
**Kappa架构**聚焦于流处理,用单一处理层应对实时和批量数据,消除Lambda架构的双重系统。通过数据重放保证一致性,简化开发与维护,降低成本,提升灵活性。然而,资源消耗大,复杂查询处理不易。关键技术包括Apache Flink、Spark Streaming、Kafka、DynamoDB等,适合需实时批量数据处理的场景。随着流处理技术进步,其优势日益凸显。
605 0
「大数据」Kappa架构
|
Apache
apisix~14在自定义插件中调用proxy_rewrite
在 Apache APISIX 中,通过 proxy-rewrite 插件来修改上游配置时,需要确保插件的执行顺序和上下文环境正确。你提到在自己的插件中调用 proxy_rewrite.rewrite({host="new_upstream"}, ctx),但新上游没有生效,这可能是由于以下几个原因: 1. 插件执行顺序:确保你的自定义插件在 proxy-rewrite 插件之后执行,proxy-rewrite.priority是1008。
253 0
|
人工智能 小程序 机器人
开源一个RAG大模型本地知识库问答机器人-ChatWiki
准备工作 再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求 • Cpu:最低需要2 Core • RAM:最低需要4GB 开始安装 ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:
705 0
|
Prometheus 监控 Cloud Native
Docker下Prometheus和Grafana三部曲之三:自定义监控项开发和配置
本文详细讲述了业务系统如何将自定义的监控项上报到prometheus,并且在Grafana上配置监控项展示上报的自定义数据
603 0
Docker下Prometheus和Grafana三部曲之三:自定义监控项开发和配置
|
监控 测试技术 Apache
性能测试:方法、工具与最佳实践
性能测试:方法、工具与最佳实践
884 0