分布式ID
在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。很容易想到的是利用自增,但是自增有很多问题,例如ID有太强的规律,可能会被恶意查询搜集,面对数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,这样数据库的自增ID显然不能满足需求;特别一点的如商品、订单、用户也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?
分布式ID要求
面对分布式ID,需要满足下面的要求:
- 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
- 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
- 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
- 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
上述123对应三类不同的场景,但是3和4的需求是互斥的,也就是无法使用同一个方案满足。除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个与数据有关的动作都无法执行,会带来一场灾难。由此总结下一个ID生成系统最少应该做到如下几点:
- 平均延迟和TP999延迟都要尽可能低;
- 可用性5个9(这是美团的要求,有些企业例如阿里要求6个9);
- 高QPS。
分布式ID生成策略
目前业界常用的ID生成策略有很多,例如UUID、雪花生成算法、Redis、Zookeeper等,这儿只简单讲讲UUID以及Snowflake,后面要开篇详谈。
UUID生成算法
UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000
,到目前为止业界一共有5种方式生成UUID。
优点:
- 性能非常高:本地生成,没有网络消耗。
缺点:
- 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
- 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
- ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用:
① MySQL官方有明确的建议主键要尽量越短越好[4],36个字符长度的UUID不符合要求。
All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a secondary index contains the primary key columns for the row, as well as the columns specified for the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.
② 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变 动,严重影响性能。
雪花生成算法
这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:
41-bit的时间可以表示(1L<<41)/(1000L360024*365)=69年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。12个自增序列号可以表示212212个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。
这种方式的优缺点是:
优点:
- 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
- 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
- 可以根据自身业务特性分配bit位,非常灵活。
缺点:
- 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
弹性扩容
说人话,就是让集群根据计划在某一段时间自动对资源进行扩容,并在设置的计划还原时间时释放资源。这样能解决规律性的资源峰谷需求,达到充分合理利用资源的目的。 但是弹性扩容有一些问题:
第一,虚拟机弹性能力较弱。使用虚拟机部署业务,在弹性扩容时,需要经过申请虚拟机、创建和部署虚拟机、配置业务环境、启动业务实例这几个步骤。前面的几个步骤属于私有云平台,后面的步骤属于业务工程师。一次扩容需要多部门配合完成,扩容时间以小时计,过程难以实现自动化。如果可以实现自动化“一键快速扩容”,将极大地提高业务弹性效率,释放更多的人力,同时也消除了人工操作导致事故的隐患。
第二,IT成本高。由于虚拟机弹性能力较弱,业务部门为了应对流量高峰和突发流量,普遍采用预留大量机器和服务实例的做法。即先部署好大量的虚拟机或物理机,按照业务高峰时所需资源做预留,一般是非高峰时段资源需求的两倍。资源预留的办法带来非常高的IT成本,在非高峰时段,这些机器资源处于空闲状态,也是巨大的浪费。