AI/ML项目中四大常见障碍

简介: 随着应用需求和技术发展,各种规模和各个垂直领域的企业都开始拥抱人工智能(AI)和机器学习(ML)。他们渴望利用人工智能进行大数据分析,以识别商业趋势,同时改善服务和产品。公司也在利用人工智能自动化销售流程、营销计划和客户服务计划,共同的目标是降低成本、增加收入。

但不幸的现实是,85%的AI和ML项目都无法完整交付,只有53%的项目能从原型到生产。尽管如此,根据最近的IDC支出指南,到2025年,美国在人工智能方面的支出将增长到1200亿美元,增幅将达到20%甚至更多。
image.png
因此,避免五个经常导致AI和ML项目失败的常见错误是很重要的。

  1. 了解训练ML算法所需的资源,特别是数据资源

虽然说正在利用AI和ML革新公司的流程听起来很不错,但事实是80%的公司发现这些项目比预期的更难。

为了使这些项目获得成功,需要清楚地了解在资源和人员方面需要什么。最常见的错误之一是不了解如何获得正确的训练数据——这不仅对此类计划的成功至关重要,而且还需要大量的努力和专业知识才能成功完成。大多数希望采用AI/ML项目的公司无法获得确保高质量、公正结果所需的数据数量或数据多样性。

然而,如果做不到这一点,往往会给成功带来巨大的障碍,导致项目成本飙升,项目信心暴跌。

可供公司购买的训练数据并不匮乏,许多第三方数据公司能够提供服务。问题在于,一家公司可以轻松地以低廉的价格购买大量数据并不意味着它就是高质量的训练数据,而这正是成功的AI和ML项目所需要的。公司需要的不是简单地购买一刀切的数据,而是特定于项目的数据。

因此,为了减少偏见,确保数据能够代表广泛而多样的受众是很重要的。数据还需要针对你的算法进行准确的标注,并且应该始终检查数据是否符合数据标准、数据隐私法和安全措施的要求。

2.不要奢望人工智能发展会一帆风顺
ML算法的训练不是一个奇异的过程。一旦训练开始并且更好地理解了数据模型,就必须不断地对所收集的数据进行更改。在算法训练过程开始之前,要知道您实际需要什么数据并不容易。例如,您可能会意识到训练集或数据收集方式存在问题。

如同传统的软件开发一样,人工智能本质上也是软件构成的,需要通过持续、稳定的投入并逐渐产生效益。而在这一过程中,永远不要掉以轻心。

  1. 始终集成质量保证(QA)测试

通常,QA测试被认为是确保产品正确工作的附加项或形式,而不是被视为在所有迭代中优化产品的必备工具。事实上,QA测试是成功AI开发的重要组成部分。结果验证应该整合到人工智能开发过程的每个阶段,以降低成本,加快开发时间表,并确保资源的有效分配。

  1. 安排频繁的应用反馈

尽管想象起来可能令人气馁,但现实是,人工智能项目永远不会真正完成。即使项目超出了准确性和性能预期,你仍然有上升和完善的空间。此外,算法会根据不断变化的事物(观点、对话、图像等)做出决策。为了让人工智能体验在现在和未来都获得成功,它必须在滚动的基础上进行再训练,以适应新的社会环境、技术发展和其他影响数据的变化。

事实上,从AI的采用中看到最积极影响的公司遵循核心和AI最佳实践,在AI上的投入比同行更高效和有效。这包括在部署前测试AI模型的性能、跟踪性能以查看结果是否随着时间的推移而改善,以及制定良好的协议以确保数据质量。

通过开发一个强大的开发AI程序的方法,公司可以避免这些常见的错误,并确保他们的AI和ML计划的长期成功。​

相关文章
|
2月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
1159 133
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
2月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
本文介绍如何在Spring AI中自定义Advisor实现日志记录、结构化输出、对话记忆持久化及多模态开发,结合阿里云灵积模型Qwen-Plus,提升AI应用的可维护性与功能性。
616 125
AI 超级智能体全栈项目阶段三:自定义 Advisor 与结构化输出实现以及对话记忆持久化开发
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1392 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
4月前
|
人工智能 前端开发 机器人
10+热门 AI Agent 框架深度解析:谁更适合你的项目?
选型Agent框架不等于追热门!要选真正能跑得稳、适配团队能力与业务需求的框架。架构选错,轻则性能差,重则项目难推进。本文详解10大热门框架对比、5大新兴框架推荐及四步选型法,助你高效落地AI应用。
|
3月前
|
人工智能 IDE 开发工具
通义灵码 AI IDE使用体验(3)项目优化及bug修复
本文介绍了使用通义灵码 AI IDE进行项目重构与优化的全过程,涵盖页面调整、UI更新、功能修复等内容,并展示了多次优化后的成果与仍存在的问题。
347 0
|
人工智能 自然语言处理 IDE
通义灵码 AI IDE使用体验(1)项目初创
通义灵码 AI IDE上线,作为AI IDE的重度使用者怎能错过?本文详细体验了从安装到项目开发的全过程,界面友好,操作简便,支持智能问答、文件编辑、智能体三种模式。通过智能体方式快速开发项目,自动规划功能、管理环境,虽在复杂项目中仍有提升空间,但整体体验流畅,适合开发者尝试。
826 0
|
3月前
|
人工智能 IDE 开发工具
通义灵码 AI IDE使用体验(2)项目重构
本文介绍了如何使用灵码IDE将一个简单的CS架构项目重构为BS架构,涉及项目依赖修改、功能迁移、自动开发Web页面等内容,验证了灵码在复杂开发任务中的能力。尽管界面美观度不足,但核心功能已实现。
425 66
|
2月前
|
人工智能 关系型数据库 数据库
公募REITs专属AI多智能体查询分析项目
公募REITs专属AI多智能体查询分析项目。本项目是基于 OpenAI Agent 框架的多智能体项目,提供二级市场数据查询分析、招募说明书内容检索、公告信息检索、政策检索等多板块查询服务。支持图标绘制、文件生成。
公募REITs专属AI多智能体查询分析项目
|
1月前
|
人工智能 小程序 搜索推荐
【一步步开发AI运动APP】十二、自定义扩展新运动项目2
本文介绍如何基于uni-app运动识别插件实现“双手并举”自定义扩展运动,涵盖动作拆解、姿态检测规则构建及运动分析器代码实现,助力开发者打造个性化AI运动APP。

热门文章

最新文章