1、快速排序
(1)快速排序的介绍
快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
(2)快速排序的原理
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
(3)动态图演示
(4)代码演示
/** * 快速排序方法 * @param array * @param start * @param end * @return */ public static int[] QuickSort(int[] array, int start, int end) { if (array.length < 1 || start < 0 || end >= array.length || start > end) return null; int smallIndex = partition(array, start, end); if (smallIndex > start) QuickSort(array, start, smallIndex - 1); if (smallIndex < end) QuickSort(array, smallIndex + 1, end); return array; } /** * 快速排序算法——partition * @param array * @param start * @param end * @return */ public static int partition(int[] array, int start, int end) { int pivot = (int) (start + Math.random() * (end - start + 1)); int smallIndex = start - 1; swap(array, pivot, end); for (int i = start; i <= end; i++) if (array[i] <= array[end]) { smallIndex++; if (i > smallIndex) swap(array, i, smallIndex); } return smallIndex; } /** * 交换数组内两个元素 * @param array * @param i * @param j */ public static void swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; } 复制代码
2、希尔排序
(1)希尔排序的介绍
希尔排序(Shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因D.L.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
(2)希尔排序的原理
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k 趟排序;
- 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
(3)动态图演示
(4)代码演示
/** * 希尔排序 * * @param array * @return */ public static int[] ShellSort(int[] array) { int len = array.length; int temp, gap = len / 2; while (gap > 0) { for (int i = gap; i < len; i++) { temp = array[i]; int preIndex = i - gap; while (preIndex >= 0 && array[preIndex] > temp) { array[preIndex + gap] = array[preIndex]; preIndex -= gap; } array[preIndex + gap] = temp; } gap /= 2; } return array; }