回溯——77. 组合

简介: 本专栏按照数组—链表—哈希—字符串—栈与队列—二叉树—回溯—贪心—动态规划—单调栈的顺序刷题,采用代码随想录所给的刷题顺序,一个正确的刷题顺序对算法学习是非常重要的,希望对大家有帮助

1 题目描述

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/combinations

2 题目示例

示例 1:

输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:

输入:n = 1, k = 1
输出:[[1]]

3 题目提示

1 <= n <= 20
1 <= k <= n

4 思路

重点概括:

  • 如果解决—个问题有多个步骤,每一个步骤有多种方法,题目又要我们找出所有的方法,可以使用回溯算法;
  • 回溯算法是在—棵树上的深度优先遍历(因为要找所有的解,所以需要遍历);
  • 组合问题,相对于排列问题而言,不计较一个组合内元素的顺序性(即[1,2,3]与[1,3,2]认为是同一个组合),因此很多时候需要按某种顺序展开搜索,这样才能做到不重不漏。

既然是树形问题上的深度优先遍历,因此首先画出树形结构。例如输入:n = 4,k = 2,我们可以发现如下递归结构:

  1. 如果组合里有1,那么需要在[2,3,4]里再找1个数;
  2. 如果组合里有2,那么需要在[3,4]里再找1数。注意:这里不能再考虑1,因为包含1的组合,在第1种情况中已经包含。

依次类推(后面部分省略),以上描述体现的递归结构是:在以n结尾的候选数组里,选出若干个元素。
image.png

说明:

  • 叶子结点的信息体现在从根结点到叶子结点的路径上,因此需要一个表示路径的变量path,它是一个列表,特别地,path是一个栈;
  • 每一个结点递归地在做同样的事情,区别在于搜索起点,因此需要一个变量start ,表示在区间Lbegin, n]里选出若干个数的组合;
  • 可能有一些分支没有必要执行,我们放在优化中介绍。

5 我的答案

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;

public class Solution {

    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        if (k <= 0 || n < k) {
            return res;
        }
        // 从 1 开始是题目的设定
        Deque<Integer> path = new ArrayDeque<>();
        dfs(n, k, 1, path, res);
        return res;
    }

    private void dfs(int n, int k, int begin, Deque<Integer> path, List<List<Integer>> res) {
        // 递归终止条件是:path 的长度等于 k
        if (path.size() == k) {
            res.add(new ArrayList<>(path));
            return;
        }

        // 遍历可能的搜索起点
        for (int i = begin; i <= n; i++) {
            // 向路径变量里添加一个数
            path.addLast(i);
            // 下一轮搜索,设置的搜索起点要加 1,因为组合数理不允许出现重复的元素
            dfs(n, k, i + 1, path, res);
            // 重点理解这里:深度优先遍历有回头的过程,因此递归之前做了什么,递归之后需要做相同操作的逆向操作
            path.removeLast();
        }
    }
}

优化

我们上面的代码,搜索起点遍历到 n,即:递归函数中有下面的代码片段:

// 从当前搜索起点 begin 遍历到 n
for (int i = begin; i <= n; i++) {
    path.addLast(i);
    dfs(n, k, i + 1, path, res);
    path.removeLast();
}

事实上,如果n = 7,k = 4,从5开始搜索就已经没有意义了,这是因为:即使把5选上,后面的数只有6和7,一共就3个候选数,凑不出4个数的组合。因此,搜索起点有上界,这个上界是多少,可以举几个例子分析。
分析搜索起点的上界,其实是在深度优先遍历的过程中剪枝,剪枝可以避免不必要的遍历,剪枝剪得好,可以大幅度节约算法的执行时间。

容易知道:搜索起点和当前还需要选几个数有关,而当前还需要选几个数与已经选了几个数有关,即与path的长度相关。我们举几个例子分析:
例如: n = 6 , k = 4。
path.size() == 1的时候,接下来要选择3个数,搜索起点最大是4,最后一个被选的组合是[4,5,6];
path.size() == 2的时候,接下来要选择2个数,搜索起点最大是5,最后一个被选的组合是[5, 6];
path.size() == 3的时候,接下来要选择1个数,搜索起点最大是6,最后一个被选的组合是[6] ;
再如:n = 15 , k = 4。
path.size() == 1的时候,接下来要选择3个数,搜索起点最大是13,最后一个被选的是[13,14,15] ;
path.size() == 2的时候,接下来要选择2个数,搜索起点最大是14,最后一个被选的是[14, 15];
path.size() == 3的时候,接下来要选择1个数,搜索起点最大是15,最后一个被选的是[15] ;
可以归纳出:
搜索起点的上界+接下来要选择的元素个数一1 = n
其中,接下来要选择的元素个数= k - path.size(),整理得到:
搜索起点的上界 = n - (k - path.size()) + 1
所以,我们的剪枝过程就是:把i <= n改成i <= n - (k -path. size() +1 :

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;

public class Solution {

    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        if (k <= 0 || n < k) {
            return res;
        }
        Deque<Integer> path = new ArrayDeque<>();
        dfs(n, k, 1, path, res);
        return res;
    }

    private void dfs(int n, int k, int index, Deque<Integer> path, List<List<Integer>> res) {
        if (path.size() == k) {
            res.add(new ArrayList<>(path));
            return;
        }

        // 只有这里 i <= n - (k - path.size()) + 1 与参考代码 1 不同
        for (int i = index; i <= n - (k - path.size()) + 1; i++) {
            path.addLast(i);
            dfs(n, k, i + 1, path, res);
            path.removeLast();
        }
    }
}
相关文章
|
8月前
|
Kubernetes 算法 测试技术
【贪心】【回溯】【字符串】2014. 重复 K 次的最长子序列
【贪心】【回溯】【字符串】2014. 重复 K 次的最长子序列
|
8月前
|
算法
【算法系列篇】递归、搜索和回溯(四)
【算法系列篇】递归、搜索和回溯(四)
|
7月前
39.组合总和(回溯)
39.组合总和(回溯)
|
8月前
|
存储 算法
算法系列--递归,回溯,剪枝的综合应用(3)(上)
算法系列--递归,回溯,剪枝的综合应用(3)(上)
51 0
算法系列--递归,回溯,剪枝的综合应用(3)(上)
|
8月前
|
算法
算法系列--递归,回溯,剪枝的综合应用(1)(上)
算法系列--递归,回溯,剪枝的综合应用(1)
62 0
|
8月前
|
算法
算法系列--递归,回溯,剪枝的综合应用(1)(下)
算法系列--递归,回溯,剪枝的综合应用(1)
46 0
|
8月前
|
算法
算法系列--递归,回溯,剪枝的综合应用(2)(上)
算法系列--递归,回溯,剪枝的综合应用(2)
49 0
|
8月前
|
算法
算法系列--递归,回溯,剪枝的综合应用(3)(下)
算法系列--递归,回溯,剪枝的综合应用(3)(下)
44 0
|
8月前
|
算法 Java
算法系列--递归,回溯,剪枝的综合应用(2)(下)
算法系列--递归,回溯,剪枝的综合应用(2)(下)
64 0
|
8月前
|
算法
【算法系列篇】递归、搜索和回溯(二)
【算法系列篇】递归、搜索和回溯(二)

热门文章

最新文章