二叉树——111. 二叉树的最小深度

简介: 本专栏按照数组—链表—哈希—字符串—栈与队列—二叉树—回溯—贪心—动态规划—单调栈的顺序刷题,采用代码随想录所给的刷题顺序,一个正确的刷题顺序对算法学习是非常重要的,希望对大家有帮助

1 题目描述

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

2 题目示例

image.png

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

3 题目提示

树中节点数的范围在 [0, 105] 内
-1000 <= Node.val <= 1000

4 思路

方法一:深度优先搜索
首先可以想到使用深度优先搜索的方法,遍历整棵树,记录最小深度。
对于每一个非叶子节点,我们只需要分别计算其左右子树的最小叶子节点深度。这样就将一个大问题转化为了小问题,可以递归地解决该问题。
复杂度分析
时间复杂度:O(N),其中N是树的节点数。对每个节点访问一次。
·空间复杂度:O(H),其中H是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为O(N)。平均情况下树的高度与节点数的对数正相关,空间复杂度为O(log N)。
方法二:广度优先搜索
同样,我们可以想到使用广度优先搜索的方法,遍历整棵树。当我们找到一个叶子节点时,直接返回这个叶子节点的深度。广度优先搜索的性质保证了最先搜索到的叶子节点的深度—定最小。
复杂度分析
时间复杂度:O(N),其中N是树的节点数。对每个节点访问一次。
·空间复杂度:O(N),其中N是树的节点数。空间复杂度主要取决于队列的开销,队列中的元素个数不会超过树的节点数。

5 我的答案

方法一:深度优先搜索

class Solution {
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }

        if (root.left == null && root.right == null) {
            return 1;
        }

        int min_depth = Integer.MAX_VALUE;
        if (root.left != null) {
            min_depth = Math.min(minDepth(root.left), min_depth);
        }
        if (root.right != null) {
            min_depth = Math.min(minDepth(root.right), min_depth);
        }

        return min_depth + 1;
    }
}

方法二:广度优先搜索

class Solution {
    class QueueNode {
        TreeNode node;
        int depth;

        public QueueNode(TreeNode node, int depth) {
            this.node = node;
            this.depth = depth;
        }
    }

    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }

        Queue<QueueNode> queue = new LinkedList<QueueNode>();
        queue.offer(new QueueNode(root, 1));
        while (!queue.isEmpty()) {
            QueueNode nodeDepth = queue.poll();
            TreeNode node = nodeDepth.node;
            int depth = nodeDepth.depth;
            if (node.left == null && node.right == null) {
                return depth;
            }
            if (node.left != null) {
                queue.offer(new QueueNode(node.left, depth + 1));
            }
            if (node.right != null) {
                queue.offer(new QueueNode(node.right, depth + 1));
            }
        }

        return 0;
    }
}
相关文章
|
3天前
|
人工智能 运维 安全
|
1天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
8天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
767 109
|
3天前
|
机器学习/深度学习 传感器 算法
Edge Impulse:面向微型机器学习的MLOps平台——论文解读
Edge Impulse 是一个面向微型机器学习(TinyML)的云端MLOps平台,致力于解决嵌入式与边缘设备上机器学习开发的碎片化与异构性难题。它提供端到端工具链,涵盖数据采集、信号处理、模型训练、优化压缩及部署全流程,支持资源受限设备的高效AI实现。平台集成AutoML、量化压缩与跨硬件编译技术,显著提升开发效率与模型性能,广泛应用于物联网、可穿戴设备与边缘智能场景。
172 127
|
3天前
|
算法 Python
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
230 152
|
5天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
212 127
|
4天前
|
机器学习/深度学习 存储 资源调度
CMSIS-NN:ARM Cortex-M处理器的高效神经网络内核——论文解读
CMSIS-NN是专为ARM Cortex-M系列微控制器优化的神经网络计算内核库,旨在支持资源受限的物联网边缘设备进行高效的深度学习推理。该库通过对卷积、池化、全连接层等关键操作进行定点量化、SIMD指令优化和内存布局调整,显著提升了模型在嵌入式设备上的运行效率。实验表明,CMSIS-NN在Cortex-M7处理器上的推理速度比基准实现提升了近5倍,大幅降低了功耗,为边缘AI应用提供了可行的技术路径。
224 128