数组——27. 移除元素

简介: 本专栏按照数组—链表—哈希—字符串—栈与队列—二叉树—回溯—贪心—动态规划—单调栈的顺序刷题,采用代码随想录所给的刷题顺序,一个正确的刷题顺序对算法学习是非常重要的,希望对大家有帮助

1 题目描述

  1. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝
int len = removeElement(nums, val);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
    print(nums[i]);
}

2 题目示例

示例 1:

输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。

示例 2:

输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。

3 题目提示

  • 0 <= nums.length <= 100
  • 0 <= nums[i] <= 50
  • 0 <= val <= 100

4 思路

有的同学可能说了,多余的元素,删掉不就得了。

要知道数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。

5 我的答案

class Solution {
    public int removeElement(int[] nums, int val) {

        // 快慢指针
        int fastIndex = 0;
        int slowIndex;
        for (slowIndex = 0; fastIndex < nums.length; fastIndex++) {
            if (nums[fastIndex] != val) {
                nums[slowIndex] = nums[fastIndex];
                slowIndex++;
            }
        }
        return slowIndex;

    }
}
相关文章
|
安全 算法 网络安全
网络安全与信息安全:防御前线的科学与策略
【5月更文挑战第30天】在数字化时代,网络安全与信息安全保障已成为维护社会稳定、保护个人隐私和企业资产的重要环节。本文将深入探讨网络安全漏洞的概念、加密技术的应用以及提升安全意识的重要性,旨在为读者提供一个关于如何有效防御网络威胁的知识框架。通过对这些关键领域的分析,我们能够更好地理解如何在不断变化的网络环境中保持警惕和应对策略。
|
3天前
|
人工智能 运维 安全
|
1天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
8天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
770 109
|
3天前
|
机器学习/深度学习 传感器 算法
Edge Impulse:面向微型机器学习的MLOps平台——论文解读
Edge Impulse 是一个面向微型机器学习(TinyML)的云端MLOps平台,致力于解决嵌入式与边缘设备上机器学习开发的碎片化与异构性难题。它提供端到端工具链,涵盖数据采集、信号处理、模型训练、优化压缩及部署全流程,支持资源受限设备的高效AI实现。平台集成AutoML、量化压缩与跨硬件编译技术,显著提升开发效率与模型性能,广泛应用于物联网、可穿戴设备与边缘智能场景。
175 127
|
3天前
|
算法 Python
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
230 152
|
5天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
212 127