Java线程池

简介: Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利。为了编写高效稳定可靠的多线程程序,线程部分的新增内容显得尤为重要。  有关Java5线程新特征的内容全部在java.util.concurrent下面,里面包含数目众多的接口和类,熟悉这部分API特征是一项艰难的学习过程。目前有
Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利。为了编写高效稳定可靠的多线程程序,线程部分的新增内容显得尤为重要。

  有关Java5线程新特征的内容全部在java.util.concurrent下面,里面包含数目众多的接口和类,熟悉这部分API特征是一项艰难的学习过程。目前有关这方面的资料和书籍都少之又少,大所属介绍线程方面书籍还停留在java5之前的知识层面上。

  当然新特征对做多线程程序没有必须的关系,在java5之前通用可以写出很优秀的多线程程序。只是代价不一样而已。

  线程池的基本思想还是一种对象池的思想,开辟一块内存空间,里面存放了众多(未死亡)的线程,池中线程执行调度由池管理器来处理。当有线程任务时,从池中取一个,执行完成后线程对象归池,这样可以避免反复创建线程对象所带来的性能开销,节省了系统的资源。

  在Java5之前,要实现一个线程池是相当有难度的,现在Java5为我们做好了一切,我们只需要按照提供的API来使用,即可享受线程池带来的极大便利。

  Java5的线程池分好多种:固定尺寸的线程池、可变尺寸连接池、。

  在使用线程池之前,必须知道如何去创建一个线程池,在Java5中,需要了解的是java.util.concurrent.Executors类的API,这个类提供大量创建连接池的静态方法,是必须掌握的。

  一、固定大小的线程池


  import java.util.concurrent.Executors; 
  import java.util.concurrent.ExecutorService; 
  /** 
  * Java线程:线程池- 
  * 
  * @author Administrator 2009-11-4 23:30:44 
  */ 
  public class Test { 
  public static void main(String[] args) { 
  //创建一个可重用固定线程数的线程池 
  ExecutorService pool = Executors.newFixedThreadPool(2); 
  //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 
  Thread t1 = new MyThread(); 
  Thread t2 = new MyThread(); 
  Thread t3 = new MyThread(); 
  Thread t4 = new MyThread(); 
  Thread t5 = new MyThread(); 
  //将线程放入池中进行执行 
  pool.execute(t1); 
  pool.execute(t2); 
  pool.execute(t3); 
  pool.execute(t4); 
  pool.execute(t5); 
  //关闭线程池 
  pool.shutdown(); 
  } 
  } 
  class MyThread extends Thread{ 
  @Override 
  public void run() { 
  System.out.println(Thread.currentThread().getName()+"正在执行。。。"); 
  } 
  } 



  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  Process finished with exit code 0 


  二、单任务线程池

  在上例的基础上改一行创建pool对象的代码为:

  //创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。

  ExecutorService pool = Executors.newSingleThreadExecutor();

  输出结果为:


      pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  Process finished with exit code 0 


  对于以上两种连接池,大小都是固定的,当要加入的池的线程(或者任务)超过池最大尺寸时候,则入此线程池需要排队等待。

  一旦池中有线程完毕,则排队等待的某个线程会入池执行。

  三、可变尺寸的线程池

  与上面的类似,只是改动下pool的创建方式:

  //创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们。


   ExecutorService pool = Executors.newCachedThreadPool(); 
  pool-1-thread-5正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-4正在执行。。。 
  pool-1-thread-3正在执行。。。 
  pool-1-thread-2正在执行。。。 
  Process finished with exit code 0 


  四、延迟连接池

 


 import java.util.concurrent.Executors; 
  import java.util.concurrent.ScheduledExecutorService; 
  import java.util.concurrent.TimeUnit; 
  /** 
  * Java线程:线程池- 
  * 
  * @author Administrator 2009-11-4 23:30:44 
  */ 
  public class Test { 
  public static void main(String[] args) { 
  //创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。 
  ScheduledExecutorService pool = Executors.newScheduledThreadPool(2); 
  //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 
  Thread t1 = new MyThread(); 
  Thread t2 = new MyThread(); 
  Thread t3 = new MyThread(); 
  Thread t4 = new MyThread(); 
  Thread t5 = new MyThread(); 
  //将线程放入池中进行执行 
  pool.execute(t1); 
  pool.execute(t2); 
  pool.execute(t3); 
  //使用延迟执行风格的方法 
  pool.schedule(t4, 10, TimeUnit.MILLISECONDS); 
  pool.schedule(t5, 10, TimeUnit.MILLISECONDS); 
  //关闭线程池 
  pool.shutdown(); 
  } 
  } 
  class MyThread extends Thread { 
  @Override 
  public void run() { 
  System.out.println(Thread.currentThread().getName() + "正在执行。。。"); 
  } 
  } 



    pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  Process finished with exit code 0 


  五、单任务延迟连接池

  在四代码基础上,做改动

  //创建一个单线程执行程序,它可安排在给定延迟后运行命令或者定期地执行。

 


 ScheduledExecutorService pool = Executors.newSingleThreadScheduledExecutor(); 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-1正在执行。。。 
  Process finished with exit code 0 


  六、自定义线程池

 


 import java.util.concurrent.ArrayBlockingQueue; 
  import java.util.concurrent.BlockingQueue; 
  import java.util.concurrent.ThreadPoolExecutor; 
  import java.util.concurrent.TimeUnit; 
  /** 
  * Java线程:线程池-自定义线程池 
  * 
  * @author Administrator 2009-11-4 23:30:44 
  */ 
  public class Test { 
  public static void main(String[] args) { 
  //创建等待队列 
  BlockingQueue bqueue = new ArrayBlockingQueue(20); 
  //创建一个单线程执行程序,它可安排在给定延迟后运行命令或者定期地执行。 
  ThreadPoolExecutor pool = new ThreadPoolExecutor(2,3,2,TimeUnit.MILLISECONDS,bqueue); 
  //创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口 
  Thread t1 = new MyThread(); 
  Thread t2 = new MyThread(); 
  Thread t3 = new MyThread(); 
  Thread t4 = new MyThread(); 
  Thread t5 = new MyThread(); 
  Thread t6 = new MyThread(); 
  Thread t7 = new MyThread(); 
  //将线程放入池中进行执行 
  pool.execute(t1); 
  pool.execute(t2); 
  pool.execute(t3); 
  pool.execute(t4); 
  pool.execute(t5); 
  pool.execute(t6); 
  pool.execute(t7); 
  //关闭线程池 
  pool.shutdown(); 
  } 
  } 
  class MyThread extends Thread { 
  @Override 
  public void run() { 
  System.out.println(Thread.currentThread().getName() + "正在执行。。。"); 
  try { 
  Thread.sleep(100L); 
  } catch (InterruptedException e) { 
  e.printStackTrace(); 
  } 
  } 
  } 


  
      pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  pool-1-thread-2正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  pool-1-thread-1正在执行。。。 
  pool-1-thread-2正在执行。。。 
  Process finished with exit code 0 


  创建自定义线程池的构造方法很多,本例中参数的含义如下:


    ThreadPoolExecutor 
  public ThreadPoolExecutor(int corePoolSize, 
  int maximumPoolSize, 
  long keepAliveTime, 
  TimeUnit unit, 
  BlockingQueue workQueue) 


  用给定的初始参数和默认的线程工厂及处理程序创建新的 ThreadPoolExecutor。使用 Executors 工厂方法之一比使用此通用构造方法方便得多。

  参数:

  corePoolSize - 池中所保存的线程数,包括空闲线程。

  maximumPoolSize - 池中允许的最大线程数。

  keepAliveTime - 当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。

  unit - keepAliveTime 参数的时间单位。

  workQueue - 执行前用于保持任务的队列。此队列仅保持由 execute 方法提交的 Runnable 任务。

  抛出:

  IllegalArgumentException - 如果 corePoolSize 或 keepAliveTime 小于零,或者 maximumPoolSize 小于或等于零,或者 corePoolSize 大于 maximumPoolSize。

  NullPointerException - 如果 workQueue 为 null

  自定义连接池稍微麻烦些,不过通过创建的ThreadPoolExecutor线程池对象,可以获取到当前线程池的尺寸、正在执行任务的线程数、工作队列等等。

  有关Java5线程池的内容到此就没有了,更多的内容还需要研读API来获取。
目录
相关文章
|
2月前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
5天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
44 17
|
5月前
|
Java 调度 数据库
Java并发编程:深入理解线程池
在Java并发编程的海洋中,线程池是一艘强大的船,它不仅提高了性能,还简化了代码结构。本文将带你潜入线程池的深海,探索其核心组件、工作原理及如何高效利用线程池来优化你的并发应用。
|
5月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
146 1
|
2月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
209 64
|
5月前
|
安全 Java 数据库
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。
|
5月前
|
存储 监控 安全
一天十道Java面试题----第三天(对线程安全的理解------>线程池中阻塞队列的作用)
这篇文章是Java面试第三天的笔记,讨论了线程安全、Thread与Runnable的区别、守护线程、ThreadLocal原理及内存泄漏问题、并发并行串行的概念、并发三大特性、线程池的使用原因和解释、线程池处理流程,以及线程池中阻塞队列的作用和设计考虑。
|
1月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
1月前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
2月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
122 38