人工智能会彻底改变医疗保健的未来吗?

简介: 医学是人工智能最激动人心的前沿领域之一,但人工智能将在哪些方面对医疗保健的未来产生真正的影响?

74abff986ebe2660fdf165e4781f47960fb0cc.png

医学是人工智能最激动人心的前沿领域之一,但人工智能将在哪些方面对医疗保健的未来产生真正的影响? O'Reilly Media 内容策略副总裁 Rachel Roumeliotis 在这里回答。

数据将如何更好地改变诊断
很少有行业像医学那样数据密集。医疗数据有多种形式:图像、音频、视频、非结构化文本和结构化信息。所有这些数据都受到其他行业所经历的传统问题的影响:信息缺失、值损坏、可疑异常值、缺少标签、印刷错误等等。

随着医学数据库的增多,清理和标记信息变得越来越重要。虽然我们距离解决这一挑战还有一段距离,但我们看到了 Holoclean 和 Snorkel 之类的重要进展。前者是一个开源的、基于机器学习的系统,用于自动错误检测和修复,已成功用于包括医院在内的多种医疗应用中。

与此同时,Snorkel 是一种开源数据编程工具,它可以自动执行耗时的任务,即创建训练并以编程方式标记用于训练机器学习应用程序的大型数据集。该技术已经在医疗领域取得了重大成功。一个对罕见主动脉瓣畸形进行分类的项目使用了来自英国生物银行的庞大的人口规模数据集,并且使用数据编程,能够自动标记大约 4,000 个以前未标记的 MRI 序列——否则这些工作必须由手。

同样的数据编程工具也为生物医学图像分析带来了成功,以及提取隐藏在现有资源中的知识。例如,Snorkel 的开发人员创建了一个数据提取工具,该工具通过梳理生物医学文献来提取特征和基因组变异之间的关联。通过这种方式,人工智能在提升我们的医学知识的同时提供更快、更准确的诊断——鉴于训练有素的医务人员短缺,这是一个特别重要的考虑因素。

具有“协同学习”的全球模型库
医疗行业中定义的数据挑战之一是信息极其敏感的性质。我们不仅要处理人们的个人病史,而且制药和其他医疗企业自然会严格保护他们的数据。然而,巨大的飞跃需要我们将这些数据汇集在一起??,以找到有助于更好地了解疾病和改进治疗方法的见解。

在北京举行的人工智能会议上,加州大学伯克利分校 RISELab 主任 Ion Stoica 描述了新项目,这些项目使组织能够在不实际共享数据的情况下进行合作。这种新的协作模式被称为“合作竞争”——收集匿名数据以创建一个全球模型库,每个参与者都可以将其用于自己的项目。

竞争性学习特别令人兴奋的是,它在其他行业中也有大量敏感数据数据集的应用。例如,金融机构可以使用该模型来构建更准确、更强大的欺诈模型,展示医学领域的先驱技术将如何很快改善我们生活的其他领域。

新经济与市场
然而,这种模式只是医疗保健行业正在开发的新市场的一个例子。例如,一家正在为未来创造技术的公司是 Computable Labs,这是一家初创公司,它正在构建工具来创建这些新的数据市场,解决重要问题,如市场治理、为市场中的数据赋予价值,以及确保隐私的协议。

RISELab 通过设想新的双边市场将这一想法更进一步,这些市场由人工智能在双方进行调解。仅举一个例子来说明这是如何工作的,假设您是一名糖尿病患者,并且正在使用一项根据您的病情推荐食谱的服务——但您不喜欢该服务推荐的很多菜肴。在一个双向的、以人工智能为中介的市场中,您的推荐引擎会了解您的口味和需求,然后与其他引擎沟通以协商出令人满意的菜单。

然而,开发建立在数据流之上的新市场机制不仅会对医疗行业产生重大影响;它实际上代表了一次令人难以置信的雄心勃勃的尝试,旨在重新构想资本主义本身的内部运作方式。虽然数据密集型医疗保健行业显然是出现这种情况的地方,但其应用可能是无限的。这只是一个例子,说明医学不仅帮助我们活得足够长,享受更美好、技术更先进的未来,而且实际上也有助于创造未来。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
人工智能 搜索推荐
人工智能在医疗保健领域的应用
人工智能在医疗保健领域的应用
111 0
|
人工智能 搜索推荐
【人工智能】黄金AI冰川:重新思考医疗保健的罗杰钟形曲线
【人工智能】黄金AI冰川:重新思考医疗保健的罗杰钟形曲线
|
机器学习/深度学习 人工智能 机器人
人工智能如何帮助医疗保健行业发展
到目前为止,人工智能 (AI) 和机器学习以多种方式影响医疗保健行业,其中最重要的是预测建模、诊断、患者体验和药物发现。事实上,鉴于未来几年全球人口老龄化和医生短缺,人工智能技术应用于医疗保健行业将是一个重要的转折点。
150 0
|
机器学习/深度学习 数据采集 人工智能
医疗保健领域成功实施人工智能的挑战
在将人工智能纳入医疗工作流程时,临床实践面临着重大挑战。
114 0
医疗保健领域成功实施人工智能的挑战
|
机器学习/深度学习 人工智能 搜索推荐
已近颠覆期:当人工智能深入医疗保健
要如何持续发展以满足患者需求?Ambrozie认为,“首先就是在了解短期护理需求之外,真正把握患者的长期健康需求,而这必然要求分析难以想象的庞大数据——包括基因组、人口统计数据、病史、环境因素、症状等。实际上,供应商不可能手动完成如此规模的数据分析。AI和机器学习正不断发展,为超大规模健康数据的处理和分析提供自动化解决方案,最终帮助医师为每位患者找到安全且个性化的治疗途径。
89 0
|
人工智能 自然语言处理 安全
2022年医疗保健领域的人工智能发展
2022年,人工智能在医疗保健领域会有怎样的发展呢?其会如何在医疗保健行业中被使用的呢?
129 0
2022年医疗保健领域的人工智能发展
|
人工智能 自然语言处理 安全
2022年医疗保健中的人工智能:值得关注的三个趋势
无代码工具和日益增长的文本实用性表明人工智能的复杂性不断提高,但仍然存在安全问题。
2022年医疗保健中的人工智能:值得关注的三个趋势
|
机器学习/深度学习 传感器 人工智能
人工智能将彻底改变医疗设备技术
  人工智能和相关技术已经成为医疗保健行业的一大亮点,具有改变患者护理和管理流程的潜力。   人工智能系统正在以惊人的速度发展,并且在成功复制重复性和复杂任务,提供独特见解方面已经取得了显着进步,从而使产品开发人员可以专注于更细微的方面。基于AI的程序可以获取信息,进行逻辑处理,使用已知变量来形成解决方案,识别错误并进行纠正,从而提高产品设计的质量。人工智能和相关技术已经成为医疗保健行业的一大亮点,它具有通过自动化任务并获得更快结果而改变患者护理和管理流程的潜力。根据Zion Market Research的一份报告,到2025年,医疗保健领域的人工智能可能会达到178亿美元。疾病诊断,临
130 0
|
存储 人工智能 安全
大数据和人工智能如何彻底改变支付方式
通过解释和分析数据,企业可以了解和预测趋势、提高安全性,并做出数据驱动的决策。大数据和人工智能技术可以超越市场预测,企业可以使用数据来改进工作流程,并优化和提高投资回报率。本文探讨了企业如何利用大数据和人工智能工具来提高投资回报率。
487 0
|
机器学习/深度学习 传感器 数据采集
人工智能影响医疗保健行业的12个方式
如今的医疗保健行业已经十分成熟,可以进行一些重大变革。从慢性病和癌症到放射学和风险评估,医疗保健行业似乎有着无数的机会利用技术在患者护理方面部署更精确、高效和有效的干预措施。
125 0