阿里云容器服务共享GPU调度支持算力分配

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: ACK Pro集群支持为应用申请GPU显存和算力,能够帮助您更精细化的使用GPU的显存和算力资源。本文介绍如何使用算力分配功能。前提条件已创建ACK Pro版集群,且集群版本为1.20.11。关于Kubernetes的升级操作,请参见升级ACK集群K8s版本。已安装共享GPU组件,且Chart版本>1.2.0。关于安装共享GPU组件的具体操作,请参见安装并使用共享GPU组件和资源工具。cGP

ACK Pro集群支持为应用申请GPU显存和算力,能够帮助您更精细化的使用GPU的显存和算力资源。本文介绍如何使用算力分配功能。

前提条件

  • 已创建ACK Pro版集群,且集群版本为1.20.11。关于Kubernetes的升级操作,请参见 升级ACK集群K8s版本
  • 已安装共享GPU组件,且Chart版本>1.2.0。关于安装共享GPU组件的具体操作,请参见 安装并使用共享GPU组件和资源工具
  • cGPU版本≥1.0.6。关于cGPU的升级操作,请参见 升级节点cGPU版本
  • 目前cgpu不兼容5xx系列的GPU驱动(以5开头的驱动,例如: 510.47.03 )。

使用限制

  • cGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA API cudaMallocManaged(),有关该方式的更多信息,请参见NVIDIA官方文档。请使用其他方式申请显存,例如调用cudaMalloc()等。
  • 共享GPU调度目前支持 仅申请显存 同时申请显存和算力 两种任务,这两种任务不能同时存在于一个节点上,即一个节点只运行 仅申请显存 的任务,或者只运行 同时申请显存和算力 的任务。
  • 为任务申请算力时,有如下限制:
  • 每一张GPU提供的算力按100计量,代表这张卡的100%算力,例如申请20代表使用GPU卡的20%算力。
  • 申请的算力值应为5的倍数,最小为5。如果不为5的倍数,任务将一直处于Pending。
  • 目前只有以下地域支持GPU显存算力分配功能。如果您需要使用该功能,请确保集群所在地域在此范围内。

地域

地域ID

华北2(北京)

cn-beijing

华东2(上海)

cn-shanghai

华东1(杭州)

cn-hangzhou

华北(张家口)

cn-zhangjiakou

华南1(深圳)

cn-shenzhen

西南1(成都)

cn-chengdu

华南2(河源)

cn-heyuan

中国(香港)

cn-hongkong

印度尼西亚(雅加达)

ap-southeast-5

新加坡

ap-southeast-1

美国(弗吉尼亚)

us-east-1

美国(硅谷)

us-west-1

日本(东京)

ap-northeast-1

  • 共享GPU调度支持算力分配的调度器于2022年3月1日上线,在此之后创建的集群将使用新版本调度器,但是在此之前已有集群的调度器不会自动升级到新版本,需要您手动进行操作。若您的集群创建时间早于2022年3月1日,请按照如下操作进行处理:
  1. 提交工单 申请新版共享GPU调度内测。
  2. 卸载旧版共享GPU组件。如果已安装旧版共享GPU组件(仅支持显存共享,Chart版本≤1.2.0),请按照以下步骤进行处理。
    1. 在控制台左侧导航栏中,单击 集群
    2. 集群列表 页面中,单击目标集群名称或者目标集群右侧 操作 列下的 详情
    3. 在集群管理页左侧导航栏中,选择 应用 > Helm
    4. Helm 页面,单击ack-ai-installer右侧 操作 列下方的 删除
    5. 在弹出的 删除应用 对话框,单击 确定
  1. 安装新版共享GPU组件。具体操作,请参见 安装并使用共享GPU组件和资源工具

创建支持算力分配的节点池

  1. 在控制台左侧导航栏中,单击 集群
  2. 集群列表 页面中,单击目标集群名称或者目标集群右侧 操作 列下的 详情
  3. 在集群管理页左侧导航栏中,选择 节点管理 > 节点池
  4. 节点池 页面右侧,单击 创建节点池 。部分参数配置说明如下,关于配置项的详细说明,请参见 节点池配置

注意 如果您需要将集群中已存在的GPU节点切换为算力隔离模式,请先将该节点从集群中移除,然后重新加入支持算力隔离的节点池。不支持直接使用kubectl label nodes <NODE_NAME> ack.node.gpu.schedule=core_mem命令将该GPU节点切换为算力隔离模式。

配置项

说明

节点池名称

设置节点池名称。本文配置为gpu-core

期望节点数

设置节点池初始节点数量。若您不需要创建节点,请填写为0

操作系统

操作系统仅支持CentOS 7.x和Alibaba Cloud Linux 2.x。

ECS标签

为ECS实例添加标签。

自定义资源组

指定节点池所扩容节点的资源组信息。

节点标签

为集群节点添加标签。本文配置如下,关于节点标签的更多信息,请参见ACK调度GPU使用的节点标签说明

  • 开启节点GPU显存和算力隔离能力:单击 ,输入第一个节点标签的 ack.node.gpu.schedule core_mem
  • 在节点上使用Binpack算法为Pod选择GPU卡:单击 ,输入第二个节点标签的 ack.node.gpu.placement binpack

使用算力分配

支持算力分配的节点池创建完成后,在该节点池扩容1个节点。同时,为了做对比,在集群中准备一个支持申请独占GPU资源的节点,两个节点上的GPU卡型号一致(本示例中两个节点的卡型号均为Tesla-V100-SXM2-32GB)。集群节点如下:

# kubectl get nodes
NAME                        STATUS   ROLES    AGE    VERSION
cn-beijing.192.168.10.163   Ready    <none>   150m   v1.20.11-aliyun.1
cn-beijing.192.168.10.164   Ready    <none>   150m   v1.20.11-aliyun.1

其中:

  • cn-beijing.192.168.10.163:未开启共享GPU调度的节点,支持按卡的维度申请GPU资源,该节点用来做对照。使用“kubectl get nodes cn-beijing.192.168.10.163 -o yaml”可以查看其拥有的GPU资源:
status:
  ...... // 省略其他内容
  allocatable:
    ......  // 省略其他内容
    nvidia.com/gpu: "1" 节点拥有1张GPU卡
    ......
  • cn-beijing.192.168.10.164:开启共享GPU调度的节点,且支持显存和算力申请,使用“kubectl get nodes cn-beijing.192.168.10.164 -o yaml”可以查看其拥有的GPU资源:
...... // 省略其他
status:
......
  allocatable:
    aliyun.com/gpu-core.percentage: "100" # 节点拥有的总的算力份数为100份
    aliyun.com/gpu-mem: "31" # 节点拥有的总的显存为31GiB

为了验证算力分配的有效性,本次示例将在两个节点上运行同一个GPU应用,观察它们的GPU利用率是否有差别。本次示例选择的GPU应用为tensorflow benchmark项目。

两个任务的相关信息如下:

任务名称

运行的节点

GPU资源申请

tensorflow-benchmark-exclusive

cn-beijing.192.168.10.163

1张GPU卡

tensorflow-benchmark-share

cn-beijing.192.168.10.164

10GiB显存和1张卡的30%算力

tensorflow-benchmark-exclusive的yaml如下:

apiVersion: batch/v1
kind: Job
metadata:
  name: tensorflow-benchmark-exclusive
spec:
  parallelism: 1
  template:
    metadata:
      labels:
        app: tensorflow-benchmark
    spec:
      containers:
      - name: tensorflow-benchmark
        image: registry.cn-beijing.aliyuncs.com/ai-samples/gpushare-sample:benchmark-tensorflow-2.2.3
        command:
        - bash
        - run.sh
        - --num_batches=50000
        - --batch_size=8
        resources:
          limits:
            nvidia.com/gpu: 1 # 申请1张GPU卡
        workingDir: /root
      restartPolicy: Never

tensorflow-benchmark-share的yaml如下:

apiVersion: batch/v1
kind: Job
metadata:
  name: tensorflow-benchmark-share
spec:
  parallelism: 1
  template:
    metadata:
      labels:
        app: tensorflow-benchmark
    spec:
      containers:
      - name: tensorflow-benchmark
        image: registry.cn-beijing.aliyuncs.com/ai-samples/gpushare-sample:benchmark-tensorflow-2.2.3
        command:
        - bash
        - run.sh
        - --num_batches=50000
        - --batch_size=8
        resources:
          limits:
            aliyun.com/gpu-mem: 10  # 申请10GiB显存
            aliyun.com/gpu-core.percentage: 30 # 申请整张卡30%算力 
        workingDir: /root
      restartPolicy: Never

两个Job除了申请的GPU资源不一样,其他完全一样(包括启动参数,使用的镜像等)。

使用kubectl apply -f <YAML>创建两个Job,然后查看两个Job的pod运行状态。

# kubectl get po
NAME                                   READY   STATUS    RESTARTS   AGE
tensorflow-benchmark-exclusive-9plm8   1/1     Running   0          4m
tensorflow-benchmark-share-w5xt8       1/1     Running   0          4m

当两个pod处于Running以后,分别进入两个pod查看它们的GPU利用率。

进入tensorflow-benchmark-exclusive-9plm8的pod,查看其利用率,执行如下命令:

 # kubectl exec -ti tensorflow-benchmark-exclusive-9plm8 -- nvidia-smi

命令输出为:

可以看到,GPU利用率为91%,pod可用显存为32510MiB(使用的是整张卡)。

进入tensorflow-benchmark-share-w5xt8的pod,查看其利用率,执行如下命令:

 # kubectl exec -ti tensorflow-benchmark-share-w5xt8 -- nvidia-smi

命令输出为:

可以看到,该pod总共可用的显存为10487MiB(10GiB左右显存),GPU利用率为28%(在30%处上下浮动)。

对比这两个任务,有如下的结论:

  • 当算力未被限制时(申请整张卡),任务的GPU利用率能够达到90%左右。
  • 当显存和算力被限制时(申请10GiB显存和30%算力),任务最大可使用的显存为10GiB,GPU利用率被限制30%左右。

可以看到算力限制是生效的。

监控

从容器服务GPU监控大盘中可以查看任务分配的算力,从下图中可以看到tensorflow-benchmark-share-w5xt8申请了30%算力:

也可以查看该任务所在节点已分配的算力,从下图中可以看到节点的0号卡已分配30%算力:

还可以查看该节点上已分配的显存比例,从下图中可以看到该节点的0号卡已分配32.3%的显存:

相关实践学习
使用ACS算力快速搭建生成式会话应用
阿里云容器计算服务 ACS(Container Compute Service)以Kubernetes为使用界面,采用Serverless形态提供弹性的算力资源,使您轻松高效运行容器应用。本文将指导您如何通过ACS控制台及ACS集群证书在ACS集群中快速部署并公开一个容器化生成式AI会话应用,并监控应用的运行情况。
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
资源调度 小程序 前端开发
【微信小程序】-- 使用 npm 包 - Vant Weapp(四十一)
【微信小程序】-- 使用 npm 包 - Vant Weapp(四十一)
|
Web App开发 移动开发 小程序
扫普通链接二维码打开小程序的踩坑过程...
扫普通链接二维码打开小程序的踩坑过程...
4006 0
扫普通链接二维码打开小程序的踩坑过程...
|
编解码 算法 ice
Google Earth Engine ——MCD19A2 V6数据产品是MODIS Terra和Aqua结合的大气校正多角度实施(MAIAC)陆地气溶胶光学深度(AOD)网格化2级产品,1公里分辨率
Google Earth Engine ——MCD19A2 V6数据产品是MODIS Terra和Aqua结合的大气校正多角度实施(MAIAC)陆地气溶胶光学深度(AOD)网格化2级产品,1公里分辨率
1185 0
Google Earth Engine ——MCD19A2 V6数据产品是MODIS Terra和Aqua结合的大气校正多角度实施(MAIAC)陆地气溶胶光学深度(AOD)网格化2级产品,1公里分辨率
|
7月前
|
机器学习/深度学习 人工智能 安全
Stable Diffusion 3.0 :一键开启你的AI绘画之旅
本文介绍了Stable Diffusion 3.0的主要优化,包括采用DiT架构提升多对象生成能力及“流匹配”技术加速采样。同时解决了部署复杂、显卡需求高等问题,可通过阿里云计算巢一键部署,实现即开即用。文章展示了人像、动漫风、科幻风等生成效果,并提供中文菜单设置与插件下载教程。无论是专业设计师还是普通用户,都能轻松开启智能创作新时代。 Flux模型支持即将上线,值得期待。
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
1379 7
阿里云实时计算Flink在多行业的应用和实践
|
消息中间件 监控 Ubuntu
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
348 3
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
|
TensorFlow 算法框架/工具 Python
【Mac 系统】解决VSCode用Conda成功安装TensorFlow但程序报错显示红色波浪线Unable to import ‘tensorflow‘ pylint(import-error)
本文解决在Mac系统上使用VSCode时遇到的TensorFlow无法导入问题,原因是Python解析器未正确设置为Conda环境下的版本。通过在VSCode左下角选择正确的Python解析器,即可解决import TensorFlow时报错和显示红色波浪线的问题。
644 9
|
Kubernetes Go 数据库
go-zero 分布式事务最佳实践
go-zero 分布式事务最佳实践
|
调度 Perl 容器
开源工具GPU Sharing:支持Kubernetes集群细粒度
问题背景 全球主要的容器集群服务厂商的Kubernetes服务都提供了Nvidia GPU容器调度能力,但是通常都是将一个GPU卡分配给一个容器。这可以实现比较好的隔离性,确保使用GPU的应用不会被其他应用影响;对于深度学习模型训练的场景非常适合,但是如果对于模型开发和模型预测的场景就会比较浪费。
17353 0
|
监控 调度 异构计算
阿里云容器服务GPU监控2.0基础篇1:基本功能使用
本系列相关文章:阿里云容器服务GPU监控2.0基础篇1:基本功能使用阿里云容器服务GPU监控2.0基础篇2:监控NVLINK带宽阿里云容器服务GPU监控2.0基础篇3:监控NVIDIA XID错误阿里云容器服务GPU监控2.0进阶篇1:剖析(Profiling)GPU使用情况必备知识阿里云容器服务GPU监控2.0进阶篇2:学会剖析(Profiling)GPU使用情况容器服务GPU监控2.0基于NV
1840 0
阿里云容器服务GPU监控2.0基础篇1:基本功能使用

相关产品

  • 容器计算服务
  • 容器服务Kubernetes版