聊一聊数据库的行存与列存

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 好多人最开始学习数据库的时候,是关系数据库,数据以表格形式存储,一行表示一条记录。其实这种就是典型的行存储(Row-based store),将表按行存储到磁盘分区上。而一些数据库还支持列存储(Column-based store),它将表按列存储到磁盘分区上。

好多人最开始学习数据库的时候,是关系数据库,数据以表格形式存储,一行表示一条记录。其实这种就是典型的行存储(Row-based store),将表按行存储到磁盘分区上。

而一些数据库还支持列存储(Column-based store),它将表按列存储到磁盘分区上。

存储方式比较

这两者的差异如下图:

微信图片_20220907172009.png从图上可以看出,行存的时候,一行记录的属性值存储在临近的空间,然后接着是下一条记录的属性值。

而列存的时候,单个属性所有的值存储在临近的的空间,即一列的所有数据连续存储的,每个属性有不同的空间。

这里,大家可以自行思考一下这两种那种更适合查询,那种更适合修改?

在数据写入上的对比:

1)行存储的写入是一次完成。写入建立在操作系统的文件系统上,可以保证写入过程的成功或者失败,数据的完整性因此可以确定。

2)列存储由于需要把一行记录拆分成单列保存,写入次数明显比行存储多,再加上磁头需要在盘片上移动和定位花费的时间,实际时间消耗会更大。所以,行存储在写入上占有很大的优势。

3)还有数据修改,这实际也是一次写入过程。所以,数据修改也是以行存储占优。

在数据读取上的对比:

1)行存储通常将一行数据完全取出,如果只需要其中几列数据的情况,就会存在冗余列,出于缩短处理时间的考量,消除冗余列的过程通常是在内存中进行的。

2)列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题,查找内容连续存储,特别适合投影。

3) 两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。比如说某列数据类型为整型 (int),那么它的数据集合一定是整型数据。这种情况使数据解析变得十分容易。相比之下,行存储则要复杂得多,因为在一行记录中保存了多种类型的数据,数据解析需要在多种数据类型之间频繁转换,这个操作很消耗 CPU,增加了解析的时间。所以,列存储的解析过程更有利于分析大数据。

4)从数据的压缩以及更性能的读取来对比。同一列的数据,数据类型一致,列存的模式下就适合数据压缩,不同的列可以采用不同的压缩算法,压缩存储就会带来 IO 性能的提升。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

优缺点比较

表的存储类型是表定义设计的第一步,客户业务类型是决定表的存储类型的主要因素。行、列存储模型各有优劣,建议根据实际情况选择。

行、列存优缺点及适用场景比较见下表:


行存 列存
优点 数据被保存在一起。INSERT/UPDATE 容易。 查询时只有涉及到的列会被读取。投影 (Projection) 很高效。任何列都能作为索引。
缺点 选择 (Selection) 时即使只涉及某几列,所有数据也都会被读取。 选择完成时,被选择的列要重新组装。INSERT/UPDATE 比较麻烦。点查询不适合。
适用场景 点查询 (返回记录少,基于索引的简单查询)。增、删、改操作较多的场景。 统计分析类查询 (OLAP,比如数据仓库业务,此类型的表上会做大量的汇聚计算,且涉及的列操作较少,关联、分组操作较多)。即时查询(查询条件不确定,行存表扫描难以使用索引)。

行存与列存实验

openGauss 支持行列混合存储,可以在建表的时候指定存储方式。下面我们进行一下实验。

实验环境 :华为云服务器 + openGauss 企业版 3.0.0 + openEuler20.03 创建行存表 custom1 和列存表 custom2 ,插入 50 万条记录。

openGauss=# create table custom1 (id integer,name varchar2(20)); 
CREATE TABLE 
openGauss=# create table custom2 (id integer,name varchar2(20)) with (orientation = column); 
CREATE TABLE 
openGauss=# insert into custom1 select n,'testtt'||n from generate_series(1,500000) n; 
INSERT 0 500000 
openGauss=# insert into custom2 select * from custom1; 
INSERT 0 500000

我们看下两个表的存储空间,比较 Size 列,可以看出列存表比行存表占用存储空间小的非常多,差不多是行存表空间的 1/7。

openGauss=# \d+ 
                                           List of relations 
 Schema |    Name    | Type  | Owner |    Size    |               Storage                | Description 
--------+------------+-------+-------+------------+--------------------------------------+------------- 
 public | custom1    | table | omm   | 24 MB      | {orientation=row,compression=no}     | 
 public | custom2    | table | omm   | 3104 kB    | {orientation=column,compression=low} |

比较下插入一条新记录的时间,列存表要稍微慢一点。

openGauss=# explain analyze insert into custom1 values(1,'zhang3'); 
                                          QUERY PLAN 
----------------------------------------------------------------------------------------------- 
 [Bypass] 
 Insert on custom1  (cost=0.00..0.01 rows=1 width=0) (actual time=0.059..0.060 rows=1 loops=1) 
   ->  Result  (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1 loops=1) 
 Total runtime: 0.135 ms 
(4 rows) 
openGauss=# explain analyze insert into custom2 values(1,'zhang3'); 
                                          QUERY PLAN 
----------------------------------------------------------------------------------------------- 
 Insert on custom2  (cost=0.00..0.01 rows=1 width=0) (actual time=0.119..0.120 rows=1 loops=1) 
   ->  Result  (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.002 rows=1 loops=1) 
 Total runtime: 0.207 ms 
(3 rows)

最后删除测试表。

openGauss=# drop table custom1; 
DROP TABLE 
openGauss=#drop table custom2; 
DROP TABLE

感兴趣的同学可以自己测试更多的的场景,比如创建大宽表、update 表等场景测试下。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

选择建议

  • 更新频繁程度:数据如果频繁更新,选择行存表。
  • 插入频繁程度:频繁的少量插入,选择行存表。一次插入大批量数据,选择列存表。
  • 表的列数:一般情况下,如果表的字段比较多即列数多(大宽表),查询中涉及到的列不多的情况下,适合列存储。如果表的字段个数比较少,查询大部分字段,那么选择行存储比较好。
  • 查询的列数:如果每次查询时,只涉及了表的少数(<50% 总列数)几个列,选择列存表。(不要问剩下的列干啥用,甲方说有用就是有用。)
  • 压缩率:列存表比行存表压缩率高。但高压缩率会消耗更多的 CPU 资源。

注意事项

列存由于特殊的存储方式,使用时约束比较多。比如,列存表不支持数组、不支持生成列、不支持创建全局临时表、不支持外键,支持的数据类型也会比行存要少。使用时需要查看对应的数据库文档。

相关文章
|
存储 算法 关系型数据库
MySQL · 引擎特性 · Infobright 列存数据库
简介 系统架构 存储引擎 优化器和执行器 数据装载和卸载 领域知识 查询优化 简单场景的示例 小结 存储结构 Data Pack Knowledge Node 数据压缩 总结 简介 Infobright 是一个面向 OLAP 场景的开源列
4007 0
|
SQL 存储 数据库
MonetDB 列存数据库架构初探
### 前言 对于越来越多的分析型场景,例如数据仓库,科学计算等, 经典的数据库DBMS的检索性能颇显乏力。 相反的,最近出现了很多面向列存的数据库DBMS,像ClickHouse,Vertica, MonetDB等,因其充分利用了现代计算机的一些硬件优势,同时舍弃了一些DBMS特性,得到了非常好的检索性能。本文就MonetDB, 整理一些资料和代码,简单介绍其核心设计。 通过简单Benc
5705 0
|
13天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
27 1
|
15天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
29 4
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
63 3
Mysql(4)—数据库索引
|
22天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
108 1
|
24天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
73 2
|
27天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
102 4
|
9天前
|
运维 关系型数据库 MySQL
安装MySQL8数据库
本文介绍了MySQL的不同版本及其特点,并详细描述了如何通过Yum源安装MySQL 8.4社区版,包括配置Yum源、安装MySQL、启动服务、设置开机自启动、修改root用户密码以及设置远程登录等步骤。最后还提供了测试连接的方法。适用于初学者和运维人员。
97 0
下一篇
无影云桌面