一篇文章把RabbitMQ、RocketMQ、Kafka三元归一(三)

简介: 一篇文章把RabbitMQ、RocketMQ、Kafka三元归一(三)

MQ带来的一些问题、及解决方案

如何保证顺序消费?

  • RabbitMQ :一个Queue对应一个Consumer即可解决。
  • RocketMQhash (key)%队列数
  • Kafkahash (key)%分区数

如何实现延迟消费?

  • RabbitMQ :两种方案 死信队列 + TTL引入RabbitMQ的延迟插件
  • RocketMQ :天生支持延时消息。
  • Kafka :步骤如下

专门为要延迟的消息创建一个Topic新建一个消费者去消费这个Topic消息持久化再开一个线程定时去拉取持久化的消息,放入实际要消费的Topic实际消费的消费者从实际要消费的Topic拉取消息。

微信图片_20220907142003.jpg

如何保证消息的可靠性投递

RabbitMQ:

  • Broker-->消费者:手动ACK
  • 生产者-->Broker:两种方案

数据库持久化:

  1. 将业务订单数据和生成的Message进行持久化操作(一般情况下插入数据库,这里如果分库的话可能涉及到分布式事务)
  2. 将Message发送到Broker服务器中
  3. 通过RabbitMQ的Confirm机制,在producer端,监听服务器是否ACK。
  4. 如果ACK了,就将Message这条数据状态更新为已发送。如果失败,修改为失败状态。
  5. 分布式定时任务查询数据库3分钟(这个具体时间应该根据的时效性来定)之前的发送失败的消息
  6. 重新发送消息,记录发送次数
  7. 如果发送次数过多仍然失败,那么就需要人工排查之类的操作。

微信图片_20220907142048.jpg

优点:能够保证消息百分百不丢失。

缺点:第一步会涉及到分布式事务问题。

消息的延迟投递:

流程图中,颜色不同的代表不同的message

1.将业务订单持久化

2.发送一条Message到broker(称之为主Message),再发送相同的一条到不同的队列或者交换机(这条称为确认Message)中。

3.主Message由实际业务处理端消费后,生成一条响应Message。之前的确认Message由Message Service应用处理入库。

4~6.实际业务处理端发送的确认Message由Message Service接收后,将原Message状态修改。

7.如果该条Message没有被确认,则通过rpc调用重新由producer进行全过程。

微信图片_20220907142119.jpg

优点:相对于持久化方案来说响应速度有所提升

缺点:系统复杂性有点高,万一两条消息都失败了,消息存在丢失情况,仍需Confirm机制做补偿。

RocketMQ

生产者弄丢数据:

Producer在把Message发送Broker的过程中,因为网络问题等发生丢失,或者Message到了Broker,但是出了问题,没有保存下来。针对这个问题,RocketMQ对Producer发送消息设置了3种方式:

同步发送  
异步发送  
单向发送

Broker弄丢数据:

Broker接收到Message暂存到内存,Consumer还没来得及消费,Broker挂掉了。

可以通过 持久化 设置去解决:

  1. 创建Queue的时候设置持久化,保证Broker持久化Queue的元数据,但是不会持久化Queue里面的消息
  2. 将Message的deliveryMode设置为2,可以将消息持久化到磁盘,这样只有Message支持化到磁盘之后才会发送通知Producer ack

这两步过后,即使Broker挂了,Producer肯定收不到ack的,就可以进行重发。

消费者弄丢数据:

Consumer有消费到Message,但是内部出现问题,Message还没处理,Broker以为Consumer处理完了,只会把后续的消息发送。这时候,就要 关闭autoack,消息处理过后,进行手动ack , 多次消费失败的消息,会进入 死信队列 ,这时候需要人工干预。

Kafka

生产者弄丢数据

设置了 acks=all ,一定不会丢,要求是,你的 leader 接收到消息,所有的 follower 都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。

Broker弄丢数据

Kafka 某个 broker 宕机,然后重新选举 partition 的 leader。大家想想,要是此时其他的 follower 刚好还有些数据没有同步,结果此时 leader 挂了,然后选举某个 follower 成 leader 之后,不就少了一些数据?这就丢了一些数据啊。

此时一般是要求起码设置如下 4 个参数:

replication.factor  
min.insync.replicas  
acks=all  
retries=MAX

我们生产环境就是按照上述要求配置的,这样配置之后,至少在 Kafka broker 端就可以保证在 leader 所在 broker 发生故障,进行 leader 切换时,数据不会丢失。

消费者弄丢数据

你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。

这不是跟 RabbitMQ 差不多吗,大家都知道 Kafka 会自动提交 offset,那么只要 关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢。

但是此时确实还是可能会有重复消费,比如你刚处理完,还没提交 offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。

如何保证消息的幂等?

以 RocketMQ 为例,下面列出了消息重复的场景:

发送时消息重复

当一条消息已被成功发送到服务端并完成持久化,此时出现了网络闪断或者客户端宕机,导致服务端对客户端应答失败。如果此时生产者意识到消息发送失败并尝试再次发送消息,消费者后续会收到两条内容相同并且Message ID也相同的消息。

投递时消息重复

消息消费的场景下,消息已投递到消费者并完成业务处理,当客户端给服务端反馈应答的时候网络闪断。为了保证消息至少被消费一次,消息队列RocketMQ版的服务端将在网络恢复后再次尝试投递之前已被处理过的消息,消费者后续会收到两条内容相同并且Message ID也相同的消息。

负载均衡时消息重复(包括但不限于网络抖动、Broker重启以及消费者应用重启)

当消息队列RocketMQ版的Broker或客户端重启、扩容或缩容时,会触发Rebalance,此时消费者可能会收到重复消息。

那么,有什么解决方案呢?直接上图。

微信图片_20220907142143.jpg

如何解决消息积压的问题?

关于这个问题,有几个点需要考虑:

如何快速让积压的消息被消费掉?

临时写一个消息分发的消费者,把积压队列里的消息均匀分发到N个队列中,同时一个队列对应一个消费者,相当于消费速度提高了N倍。

修改前:

微信图片_20220907142342.jpg

修改后:

微信图片_20220907142441.jpg

积压时间太久,导致部分消息过期,怎么处理?

批量重导。在业务不繁忙的时候,比如凌晨,提前准备好程序,把丢失的那批消息查出来,重新导入到MQ中。

消息大量积压,MQ磁盘被写满了,导致新消息进不来了,丢掉了大量消息,怎么处理?

这个没办法。谁让【消息分发的消费者】写的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。

相关文章
|
5月前
|
消息中间件 Java Kafka
消息传递新纪元:探索RabbitMQ、RocketMQ和Kafka的魅力所在
【8月更文挑战第29天】这段内容介绍了在分布式系统中起到异步通信与解耦作用的消息队列,并详细探讨了三种流行的消息队列产品:RabbitMQ、RocketMQ 和 Kafka。其中,RabbitMQ 是一个基于 AMQP 协议的开源消息队列系统,支持多种消息模型;RocketMQ 则是由阿里巴巴开源的具备高性能、高可用性和高可靠性的分布式消息队列,支持事务消息等多种特性;而 Kafka 作为一个由 LinkedIn 开源的分布式流处理平台,以高吞吐量和良好的可扩展性著称。此外,还提供了使用这三种消息队列发送和接收消息的代码示例。总之,这三种消息队列各有优势,适用于不同的业务场景。
80 3
|
2月前
|
消息中间件 大数据 Kafka
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
本文深入探讨了消息队列的核心概念、应用场景及Kafka、RocketMQ、RabbitMQ的优劣势比较,大厂面试高频,必知必会,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
|
2月前
|
消息中间件 存储 监控
ActiveMQ、RocketMQ、RabbitMQ、Kafka 的区别
【10月更文挑战第24天】ActiveMQ、RocketMQ、RabbitMQ 和 Kafka 都有各自的特点和优势,在不同的应用场景中发挥着重要作用。在选择消息队列时,需要根据具体的需求、性能要求、扩展性要求等因素进行综合考虑,选择最适合的消息队列技术。同时,随着技术的不断发展和演进,这些消息队列也在不断地更新和完善,以适应不断变化的应用需求。
120 1
|
3月前
|
消息中间件 存储 监控
说说如何解决RocketMq消息积压?为什么Kafka性能比RocketMq高?它们区别是什么?
【10月更文挑战第8天】在分布式系统中,消息队列扮演着至关重要的角色,它不仅能够解耦系统组件,还能提供异步处理、流量削峰和消息持久化等功能。在众多的消息队列产品中,RocketMQ和Kafka无疑是其中的佼佼者。本文将围绕如何解决RocketMQ消息积压、为什么Kafka性能比RocketMQ高以及它们之间的区别进行深入探讨。
119 1
|
5月前
|
消息中间件 存储 监控
RabbitMQ、Kafka对比(超详细),Kafka、RabbitMQ、RocketMQ的区别
RabbitMQ、Kafka对比(超详细),Kafka、RabbitMQ、RocketMQ的区别,设计目标、适用场景、吞吐量、消息存储和持久化、可靠性、集群负载均衡
RabbitMQ、Kafka对比(超详细),Kafka、RabbitMQ、RocketMQ的区别
|
5月前
|
消息中间件 Kafka Apache
kafka vs rocketmq: 不要只顾着吞吐量而忘了延迟这个指标
这篇文章讨论了Apache RocketMQ和Kafka的对比,强调RocketMQ在低延迟、消息重试与追踪、海量Topic、多租户等方面进行了优化,特别是在小包非批量和大量分区场景下的吞吐量超越Kafka,适合电商和金融领域等高并发、高可靠和高可用场景。
157 0
|
3月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
114 1
|
3月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
64 1
|
5月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
364 9
|
5月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
88 3

热门文章

最新文章