SpringBoot+Nacos+Kafka简单实现微服务流编排

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: SpringBoot+Nacos+Kafka简单实现微服务流编排
  • 前言
  • 准备工作
  • Nacos 安装及使用入门
  • 准备三个 SpringBoot 服务,引入 Nacos 及 Kafka
  • 业务解读
  • Nacos 配置
  • 总结

前言

最近一直在做微服务开发,涉及了一些数据处理模块的开发,每个处理业务都会开发独立的微服务,便于后面拓展和流编排。

学习了 SpringCloud Data Flow 等框架,感觉这个框架对于我们来说太重了,维护起来也比较麻烦,于是根据流编排的思想,基于我们目前的技术栈实现简单的流编排功能。

简单的说,我们希望自己的流编排就是微服务可插拔,微服务数据入口及输出可不停机修改。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。

项目地址:https://github.com/YunaiV/ruoyi-vue-pro

准备工作

Nacos 安装及使用入门

自己学习的话推荐使用 docker 安装,命令如下:

拉取镜像:

docker pull nacos/nacos-server

创建服务:

docker run --env MODE=standalone --name nacos -d -p 8848:8848 nacos/nacos-server

然后在浏览器输入 ip:8848/nacos,账号 nacos;密码 nacos。

微信图片_20220907105127.png

docker 能够帮助我们快速安装服务,减少再环境准备花的时间。

准备三个 SpringBoot 服务,引入 Nacos 及 Kafka

<parent>
   <groupId>org.springframework.boot</groupId>
   <artifactId>spring-boot-starter-parent</artifactId>
   <version>2.1.0.RELEASE</version>
</parent>
<dependency>
   <groupId>org.springframework.kafka</groupId>
   <artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
   <groupId>com.alibaba.boot</groupId>
   <artifactId>nacos-config-spring-boot-starter</artifactId>
   <version>0.2.1</version>
</dependency>

配置文件:

spring:
  kafka:
    bootstrap-servers: kafka-server:9092
    producer:
      acks: all
    consumer:
      group-id: node1-group #三个服务分别为node1 node2 node3
      enable-auto-commit: false
> 基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。
>
> 项目地址:<https://github.com/YunaiV/onemall>
# 部署的nacos服务
nacos:
  config:
    server-addr: nacos-server:8848

建议配置本机 host 就可以填写 xxx-server 不用填写服务 ip。

业务解读

我们现在需要对三个服务进行编排,保障每个服务可以插拔,也可以调整服务的位置。

微信图片_20220907105532.png

示意图如上:

  • node1 服务监听前置服务发送的数据流,输入的 topic 为前置数据服务输出 topic
  • node2 监听 node1 处理后的数据,所以 node2 监听的 topic 为 node1 输出的 topic,node3 同理,最终 node3 处理完成后将数据发送到数据流终点
  • 我们现在要调整流程移除 node2-server,我们只需要把 node1-sink 改变成 node2-sink 即可,这样我们这几个服务就可以灵活的嵌入的不同项目的数据流处理业务中,做到即插即用(当然,数据格式这些业务层面的都是需要约定好的)
  • 动态可调还可以保证服务某一节点出现问题时候,即时改变数据流向,比如发送到数暂存服务,避免 Kafka 中积累太多数据,吞吐不平衡

Nacos 配置

①创建配置

通常流编排里面每个服务都有一个输入及输出,分别为 input 及 sink,所以每个服务我们需要配置两个 topic,分别是 input-topic output-topic,我们就在 nacos 里面添加输入输出配置。

nacos 配置项需要配置 groupId,dataId,通常我们用服务名称作为 groupId,配置项的名称作为 dataId。

node1-server 服务有一个 input 配置项,配置如下:

微信图片_20220907105609.png

完成其中一个服务的配置,其它服务参考下图配置即可:

微信图片_20220907105631.png

②读取配置

代码如下:

@Configuration
@NacosPropertySource(dataId = "input", groupId = "node1-server", autoRefreshed = true)
// autoRefreshed=true指的是nacos中配置发生改变后会刷新,false代表只会使用服务启动时候读取到的值
@NacosPropertySource(dataId = "sink", groupId = "node1-server", autoRefreshed = true)
public class NacosConfig {
    @NacosValue(value = "${input:}", autoRefreshed = true)
    private String input;
    @NacosValue(value = "${sink:}", autoRefreshed = true)
    private String sink;
    public String getInput() {
        return input;
    }
    public String getSink() {
        return sink;
    }
}

③监听配置改变

服务的输入需要在服务启动时候创建消费者,在 topic 发生改变时候重新创建消费者,移除旧 topic 的消费者,输出是业务驱动的,无需监听改变,在每次发送时候读取到的都是最新配置的 topic。

因为在上面的配置类中 autoRefreshed = true,这个只会刷新 nacosConfig 中的配置值,服务需要知道配置改变去驱动消费的创建业务,需要创建 nacos 配置监听。

/**
 * 监听Nacos配置改变,创建消费者,更新消费
 */
@Component
public class ConsumerManager {
    @Value("${spring.kafka.bootstrap-servers}")
    private String servers;
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private boolean enableAutoCommit;
    @Value("${spring.kafka.consumer.group-id}")
    private boolean groupId;
    @Autowired
    private NacosConfig nacosConfig;
    @Autowired
    private KafkaTemplate kafkaTemplate;
    // 用于存放当前消费者使用的topic
    private String topic;
    // 用于执行消费者线程
    private ExecutorService executorService;
    /**
     * 监听input
     */
    @NacosConfigListener(dataId = "node1-server", groupId = "input")
    public void inputListener(String input) {
        // 这个监听触发的时候 实际NacosConfig中input的值已经是最新的值了 我们只是需要这个监听触发我们更新消费者的业务
        String inputTopic = nacosConfig.getInput();
        // 我使用nacosConfig中读取的原因是因为监听到内容是input=xxxx而不是xxxx,如果使用需要自己截取一下,nacosConfig中的内容框架会处理好,大家看一下第一张图的配置内容就明白了
        // 先检查当前局部变量topic是否有值,有值代表是更新消费者,没有值只需要创建即可
        if(topic != null) {
            // 停止旧的消费者线程
            executorService.shutdownNow();
            executorService == null;
        }
        // 根据为新的topic创建消费者
        topic = inputTopic;
        ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat(topic + "-pool-%d").build();
        executorService = new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2), threadFactory);
        // 执行消费业务
        executorService.execute(() -> consumer(topic));
    }
    /**
     * 创建消费者
     */
    public void consumer(String topic) {
        Properties properties = new Properties();
        properties.put("bootstrap.servers", servers);
        properties.put("enable.auto.commit", enableAutoCommit);
        properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("group.id", groupId);
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
        consumer.subscribe(Arrays.asList(topic));
        try {
            while (!Thread.currentThread().isInterrupted()) {
                Duration duration = Duration.ofSeconds(1L);
                ConsumerRecords<String, String> records = consumer.poll(duration);
                for (ConsumerRecord<String, String> record : records) {
                    String message = record.value();
                    // 执行数据处理业务 省略业务实现
                    String handleMessage =  handle(message);
                    // 处理完成后发送到下一个节点
                    kafkaTemplate.send(nacosConfig.getSink(), handleMessage);
                }
            }
            consumer.commitAsync();
        }
        } catch (Exception e) {
            LOGGER.error(e.getMessage(), e);
        } finally {
            try {
                consumer.commitSync();
            } finally {
                consumer.close();
            }
        }
    }
}

总结

流编排的思路整体来说就是数据流方向可调,我们以此为需求,根据一些主流框架提供的 api 实现自己的动态调整方案,可以帮助自己更好的理解流编码思想及原理。

在实际业务中,还有许多业务问题需要去突破,我们这样处理更多是因为服务可插拔,便于流处理微服务在项目灵活搭配。

因为我现在工作是在传统公司,由于一些原因很难去推动新框架的使用,经常会用一些现有技术栈组合搞一些 操作,供大家参考,希望大家多多指教。


相关文章
|
3月前
|
Cloud Native Java Nacos
微服务时代的新宠儿!Spring Cloud Nacos实战指南,带你玩转服务发现与配置管理,拥抱云原生潮流!
【8月更文挑战第29天】Spring Cloud Nacos作为微服务架构中的新兴之星,凭借其轻量、高效的特点,迅速成为服务发现、配置管理和治理的首选方案。Nacos(命名和配置服务)由阿里巴巴开源,为云原生应用提供了动态服务发现及配置管理等功能,简化了服务间的调用与依赖管理。本文将指导你通过五个步骤在Spring Boot项目中集成Nacos,实现服务注册、发现及配置动态管理,从而轻松搭建出高效的微服务环境。
246 0
|
3天前
|
Dubbo Java 应用服务中间件
深入探讨了“dubbo+nacos+springboot3的native打包成功后运行出现异常”的原因及解决方案
本文深入探讨了“dubbo+nacos+springboot3的native打包成功后运行出现异常”的原因及解决方案。通过检查GraalVM版本兼容性、配置反射列表、使用代理类、检查配置文件、禁用不支持的功能、查看日志文件、使用GraalVM诊断工具和调整GraalVM配置等步骤,帮助开发者快速定位并解决问题,确保服务的正常运行。
14 1
|
1月前
|
Java Docker 微服务
SpringBoot微服务打包Docker镜像
SpringBoot微服务打包Docker镜像
|
1月前
|
消息中间件 Java 大数据
大数据-56 Kafka SpringBoot与Kafka 基础简单配置和使用 Java代码 POM文件
大数据-56 Kafka SpringBoot与Kafka 基础简单配置和使用 Java代码 POM文件
62 2
|
3月前
|
Cloud Native Java Nacos
Spring Cloud Config、Apollo、Nacos和Archaius对比
这篇文章对比了Spring Cloud Config、Apollo、Nacos和Archaius这四种配置中心的适应场景、优缺点。文中讨论了它们的功能特点,例如Spring Cloud Config的集中化配置管理和动态刷新能力,Apollo的实时配置推送和权限治理,Nacos的服务发现和管理功能,以及Archaius的动态配置更新能力。文章指出选择配置中心应根据项目需求和架构来决定,并提供了一个对比图来帮助读者更直观地理解这些工具的差异。
80 1
Spring Cloud Config、Apollo、Nacos和Archaius对比
|
2月前
|
缓存 Java 应用服务中间件
随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架
【9月更文挑战第6天】随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架。Nginx作为高性能的HTTP反向代理服务器,常用于前端负载均衡,提升应用的可用性和响应速度。本文详细介绍如何通过合理配置实现Spring Boot与Nginx的高效协同工作,包括负载均衡策略、静态资源缓存、数据压缩传输及Spring Boot内部优化(如线程池配置、缓存策略等)。通过这些方法,开发者可以显著提升系统的整体性能,打造高性能、高可用的Web应用。
72 2
|
3月前
|
消息中间件 开发框架 Java
掌握这一招,Spring Boot与Kafka完美融合,顺序消费不再是难题,让你轻松应对业务挑战!
【8月更文挑战第29天】Spring Boot与Kafka集成广泛用于处理分布式消息队列。本文探讨了在Spring Boot中实现Kafka顺序消费的方法,包括使用单个Partition或消息Key确保消息路由到同一Partition,并设置Consumer并发数为1以保证顺序消费。通过示例代码展示了如何配置Kafka Producer和Consumer,并自定义Partitioner。为确保数据正确性,还建议在业务逻辑中增加顺序校验机制。
78 3
|
3月前
|
消息中间件 Java Kafka
|
3月前
|
运维 Java Nacos
Spring Cloud应用框架:Nacos作为服务注册中心和配置中心
Spring Cloud应用框架:Nacos作为服务注册中心和配置中心
|
3月前
|
消息中间件 Kafka Java
Spring 框架与 Kafka 联姻,竟引发软件世界的革命风暴!事件驱动架构震撼登场!
【8月更文挑战第31天】《Spring 框架与 Kafka 集成:实现事件驱动架构》介绍如何利用 Spring 框架的强大功能与 Kafka 分布式流平台结合,构建灵活且可扩展的事件驱动系统。通过添加 Spring Kafka 依赖并配置 Kafka 连接信息,可以轻松实现消息的生产和消费。文中详细展示了如何设置 `KafkaTemplate`、`ProducerFactory` 和 `ConsumerFactory`,并通过示例代码说明了生产者发送消息及消费者接收消息的具体实现。这一组合为构建高效可靠的分布式应用程序提供了有力支持。
107 0