超长序列,超快预测!深势科技联手阿里云,AI 蛋白质预测再下一城

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 强强联合,突破 AI 蛋白质预测模型推理性能瓶颈,支持最高 6.6k 长氨基酸序列蛋白质的预测计算,达到目前已知最优推理效果。

1.png


近日,深势科技与阿里云机器学习 PAI 团队联手,通过全新的蛋白质结构预测推理加速方案 FoldAcc,结合深势 Uni-Fold 最新模型代码和参数,将单次预测能支持的最大氨基酸序列长度提升至 6.6k,覆盖 99.992% 已知的蛋白序列,同时推理速度显著提升,达到目前已知的最佳推理优化效果,将为 AI 预测蛋白质结构落地应用提供重要助力。

以新冠病毒研究重点之一 —— 具有三聚体结构的刺突蛋白为例,其氨基酸序列典型总长度接近 4k,原版 AlphaFold 会因为超出显存限制(OOM)而无法进行预测计算,使用 Uni-Fold + FoldAcc 则能在 10 分钟左右完成 AI 推理计算。

自 2020 年 DeepMind 推出基于深度学习模型的 AlphaFold2 以来,AI 技术辅助蛋白质结构精确预测的相关研究备受关注,产学研界不断涌现创新成果。然而,在推动 AI 蛋白质结构预测规模化、产业化落地进程中,基础设施及工具完善性、AI 模型开发与部署效率等问题,仍然是横亘在研究者面前的难题。

2022 年 8 月,深势科技升级并开源 Uni-Fold 项目,成功复现了 AlphaFold2、AlphaFold-Multimer 模型的全尺寸从头训练,并通过多项效率优化,并将 AlphaFold 训练速度提升 220%,超越 OpenFold、FastFold 等方案,惠及更多研究者。

其中,针对困扰业界已久的 Evoformer 神经网络结构推理性能瓶颈问题,深势科技与阿里云 PAI 团队,基于在 AI 模型系统优化领域的长期积累,融合多卡并行、混合精度、编译优化等多项推理优化技术,使 Uni-Fold 训练的模型能进行多卡推理加速,并支持计算更长的氨基酸序列。

典型加速效果的测试结果如下(基于 A100-80G GPU,并启用 bf16)

1.png

Uni-Fold 升级开源,支持复合物训练

作为生命科学领域重要的基础问题,蛋白质结构研究关系到癌症预警、靶向药物研究、衰老等临床医学和生命科学课题。传统的蛋白质结构研究手段,如:X 射线晶体学、冷冻电镜等,需要消耗大量时间和资源。如何快速高效并且能够规模化地预测蛋白质结构,一直是研究者们探寻求解的重要问题。

2021 年 12 月,深势科技推出 Uni-Fold v1.0.0,国际首次复现了 AlphaFold2 官方代码的全尺寸从头训练,并开源了训练与推理代码;2022 年 8 月,Uni-Fold 升级并开源了最新代码与模型参数,完整支持蛋白质单体、复合物结构预测模型的推理与训练。

此次开源的 Uni-Fold 基于 PyTorch 复现并改进的 AlphaFold (-Multimer) 模型,支持从头训练和推理部署,并且在 Protein Data Bank(PDB)最新公布的、模板相似度小于 40% 的单体与复合物测试集上,都取得了与同类开源项目一致或更优的准确率。

1.png

此外 Uni-Fold 也进行了多项效率优化,将训练时间由 11 天缩短至约 4 天,显著优于其他同类开源项目。

1.png

机器学习平台 PAI 提供全链路 AI 工程支撑

阿里云机器学习平台 PAI 为 Uni-Fold 项目提供了完善的 AI 工程能力。PAI 是国内唯一连续入选 Gartner 数据科学与机器学习平台报告的机器学习 / 深度学习平台,面向 AI 开发及应用全链路提供全面的工程化服务,并具备丰富的场景化落地实践。

针对模型推理优化场景,PAI 自研的通用推理加速器 PAI-Blade 能在不同业务场景下,通过模型系统联合优化,使模型达到最优推理性能,兼容主流机器学习框架,适配 GPU、CPU、端侧设备等多类型加速设备。

其中,PAI-Blade 核心组件 BladeDISC 具备业界领先的动态尺寸模型优化、大颗粒度算子融合等编译优化技术,在阿里巴巴集团内外客户的实际生产场景广泛应用,助力实现高性价比的 AI 应用部署。2022 年 2 月,BladeDISC 项目正式开源。

未来,为前沿科研提供更好用的 AI 基础设施

以 AI 蛋白质结构预测为典型代表,AI for Science 的科学研究新范式正取得越来越多突破,人工智能与生命科学、物理、化学等领域的技术交织,将为科学研究和产业进步带来极大推动,也对 AI 基础技术与平台应用提出了新挑战。

深势科技是 AI for Science 科学研究范式的先行者,阿里云机器学习平台 PAI 是国内应用最广泛的机器学习平台之一,我们将持续为生物医药、能源、材料等领域的研究与产业应用提供更好用的 AI 基础设施,共同推动 AI for Science 领域的技术生态建设。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
14天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
7天前
|
人工智能 算法 新制造
走进北京科技大学,通义灵码与企业高校共筑 AI 创意课堂
近日,通义灵码有幸参与到一场由伊利集团主办的 AIGC 生态创新大赛路演舞台,与高校专家、企业代表、青年学子共同探讨 AIGC 创意应用,交流企业在数智领域转型、青年开发者科技创新的思路和落地实践。
|
14天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
9天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
121 2
|
9天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
13天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
2024年10月19日,第五届中国云计算基础架构开发者大会(CID)在北京朗丽兹西山花园酒店成功举办。本次大会汇聚了来自云计算领域的众多精英,不同背景的与会者齐聚一堂,共同探讨云计算技术的最新发展与未来趋势。
|
13天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
第五届中国云计算基础架构开发者大会(CID)于2024年10月19日在北京成功举办。大会汇聚了300多位现场参会者和超过3万名在线观众,30余位技术专家进行了精彩分享,涵盖高效部署大模型推理、Knative加速AI应用Serverless化、AMD平台PMU虚拟化技术实践、Kubernetes中全链路GPU高效管理等前沿话题。阿里云的讲师团队通过专业解读,为与会者带来了全新的视野和启发,推动了云计算技术的创新发展。
|
14天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1