大厂的OOM优化和监控方案(三)

简介: 大厂的OOM优化和监控方案(三)
  • 五、内存不足
  • 5.1 堆栈信息
  • 5.2 重温JVM内存结构
  • 5.3 图片加载优化
  • 5.4  大图监控
  • 5.5 内存泄漏监控演进
  • 5.6 线上内存泄漏监控方案
  • 5.7 native内存泄漏监控
  • 总结

五、内存不足

5.1 堆栈信息

微信图片_20220906141122.jpg这种是最常见的OOM,Java堆内存不足,512M都不够玩~

发生此问题的大部分设备都是Android 7.0,高版本也有,不过相对较少。

5.2 重温JVM内存结构

JVM在运行时,将内存划分为以下5个部分

  1. 方法区:存放静态变量、常量、即时编译代码;
  2. 程序计数器:线程私有,记录当前执行的代码行数,方便在cpu切换到其它线程再回来的时候能够不迷路;
  3. Java虚拟机栈:线程私有,一个Java方法开始和结束,对应一个栈帧的入栈和出栈,栈帧里面有局部变量表、操作数栈、返回地址、符号引用等信息;
  4. 本地方法栈:线程私有,跟Java虚拟机栈的区别在于 这个是针对native方法;
  5. 堆:绝大部分对象创建都在堆分配内存

内存不足导致的OOM,一般都是由于Java堆内存不足,绝大部分对象都是在堆中分配内存,除此之外,大数组、以及Android3.0-7.0的Bitmap像素数据,都是存放在堆中。

Java堆内存不足导致的OOM问题,线上难以复现,往往比较难定位到问题,绝大部分设备都是8.0以下的,主要也是由于Android  3.0-7.0 Bitmap像素内存是存放在堆中 导致的。(可以参考之前一篇文章分析过其源码《面试官:简历上最好不要写Glide,不是问源码那么简单》)

基于这个结论,关于Java堆内存不足导致的OOM问题,优化方案主要是图片加载优化、内存泄漏监控

5.3 图片加载优化

5.3.1 常规的图片优化方式

常规的图片加载优化,依然可以参考两年前的一篇文章《面试官:简历上最好不要写Glide,不是问源码那么简单》, 文章核心内容大概如下:

  1. 分析了主流图片库Glide和Fresco的优缺点,以及使用场景;
  2. 分析了设计一个图片加载框架需要考虑的问题;
  3. 防止图片占用内存过多导致OOM的三个方式:软引用、onLowMemory、Bitmap 像素存储位置

这篇文章现在来看还是有点意义的,其中的原理部分还没过时,不过技术更新迭代,常规的优化方式已经不太够了,长远考虑,可以做图片自动压缩、大图自动检测和告警

5.3.2 无侵入性自动压缩图片

针对图片资源,设计师往往会追求高清效果,忽略图片大小,一般的做法是拿到图后手动压缩一下,这种手动的操作完全看个人修养。

无侵入性自动压缩图片,主流的方案是利用Gradle 的Task原理,在编译过程中,mergeResourcesTask 这个任务是将所以aar、module的资源进行合并,我们可以在mergeResourcesTask 之后可以拿到所有资源文件,具体做法:

  1. mergeResourcesTask这个任务后面,增加一个图片处理的Task,拿到所有资源文件;
  2. 拿到所有资源文件后,判断如果是图片文件,则通过压缩工具进行压缩,压缩后如果图片有变小,就将压缩过的图片替换掉原图。

可以简单理解如下:

微信图片_20220906141141.jpg

具体代码可以参考 McImage 这个库。

5.4  大图监控

5.3.2 自动压缩图片只是针对本地资源,而对于网络图片,如果加载的时候没有压缩,那么内存占用会比较大,这种情况就需要监控了。

5.4.1  从图片框架侧监控

很多App内部可能使用了多个图片库,例如Glide、Picasso、Fresco、ImageLoader、Coil,如果想监控某个图片框架, 那么我们需要熟读源码,找到hook点。

对于Glide,可以通过hook SingleRequest,它里面有个requestListeners,我们可以注册一个自己的监听,图片加载完做一个大图检测。

其它图片框架,同理也是先找到hook点,然后进行类似的hook操作就可以,代码可以参考:dokit-BigImgClassTransformer

5.4.2 从ImageView侧监控

5.4.1 是从图片加载框架侧监控大图,假如项目中使用到的图片加载框架太多,有些第三方SDK内部可能自己搞了图片加载,

这种情况下我们可以从ImageView控件侧做监控,监听setImageDrawable等方法,计算图片大小如果大于控件本身大小,debug包可以弹窗提示需要修改。

方案如下:

  1. 自定义ImageView,重写setImageDrawable、setImageBitmap、setImageResource、setBackground、setBackgroundResource这几个方法,在这些方法里面,检测Drawable大小;
  2. 编译期,修改字节码,将所有ImageView的创建都替换成自定义的ImageView
  3. 为了不影响主线程,可以使用IdleHandler,在主线程空闲的时候再检测;

最终是希望当检测到大图的时候,debug环境能够弹窗提示开发进行修改,release环境可以上报后台。

debug如下效果:

微信图片_20220906141221.jpg

当然这种方案有个缺点:不能获取到图片url。

图片优化告一段落,接下来看看内存泄漏~

5.5 内存泄漏监控演进

LeakCanary

关于内存泄漏,大家可能都知道LeakCanary,只要添加一个依赖

debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.8.1'

就能实现自动检测和分析内存泄漏,并发出一个通知显示内存泄漏详情信息。

LeakCanary只能在debug环境使用,因为它是在当前进程dump内存快照,Debug.dumpHprofData(path);会冻结当前进程一段时间,整个 APP 会卡死约5~15s,低端机上可能要几十秒的时间。

ResourceCanary

微信对LeakCanary做了一些改造,将检测和分析分离,客户端只负责检测和dump内存镜像文件,文件裁剪后上报到服务端进行分析。

具体可以看这篇文章Matrix ResourceCanary -- Activity 泄漏及Bitmap冗余检测

KOOM

不管是LeakCanary 还是 ResourceCanary,他们都只能在线下使用,而线上内存泄漏监控方案,目前KOOM的方案比较完善,下面我将基于KOOM分析线上内存泄漏监控方案的核心流程。

5.6 线上内存泄漏监控方案

基于KOOM源码分析

5.6.1 检测时机

  1. 间隔5s检测一次
  2. 触发内存镜像采集的条件:
  • 当内存使用率达到80%以上
//->OOMMonitorConfig
      private val DEFAULT_HEAP_THRESHOLD by lazy {
        val maxMem = SizeUnit.BYTE.toMB(Runtime.getRuntime().maxMemory())
        when {
          maxMem >= 512 - 10 -> 0.8f
          maxMem >= 256 - 10 -> 0.85f
          else -> 0.9f
        }
      }
  • 两次检测时间内(例如5s内),内存使用率增加5%

5.6.2 内存镜像采集

我们知道LeakCanary检测内存泄漏,不能用于线上,是因为它dump内存镜像是在当前进程进行操作,会冻结App一段时间。

所以,作为线上OOM监控,dump内存镜像需要单独开一个进程。

整体的策略是:

虚拟机supend->fork虚拟机进程->虚拟机resume->dump内存镜像的策略。

dump内存镜像的源码如下:

//->ForkJvmHeapDumper
  public boolean dump(String path) {
    ...
    boolean dumpRes = false;
    try {
      //1、通过fork函数创建子进程,会返回两次,通过pid判断是父进程还是子进程
      int pid = suspendAndFork();
      MonitorLog.i(TAG, "suspendAndFork,pid="+pid);
      if (pid == 0) {
        //2、子进程返回,dump内存操作,dump内存完成,退出子进程
        Debug.dumpHprofData(path);
        exitProcess();
      } else if (pid > 0) {
        // 3、父进程返回,恢复虚拟机,将子进程的pid传过去,阻塞等待子进程结束
        dumpRes = resumeAndWait(pid);
        MonitorLog.i(TAG, "notify from pid " + pid);
      }
    }
    return dumpRes;
  }

注释1:父进程调用native方法挂起虚拟机,并且创建子进程;注释2:子进程创建成功,执行Debug.dumpHprofData,执行完后退出子进程;注释3:得知子进程创建成功后,父进程恢复虚拟机,解除冻结,并且当前线程等待子进程结束。

注释1源码如下:

// ->native_bridge.cpp
pid_t HprofDump::SuspendAndFork() {
  //1、暂停VM,不同Android版本兼容
  if (android_api_ < __ANDROID_API_R__) {
    suspend_vm_fnc_();
  }
  ...
  //2,fork子进程,通过返回值可以判断是主进程还是子进程
  pid_t pid = fork();
  if (pid == 0) {
    // Set timeout for child process
    alarm(60);
    prctl(PR_SET_NAME, "forked-dump-process");
  }
  return pid;
}

注释3源码如下:

//->hprof_dump.cpp
bool HprofDump::ResumeAndWait(pid_t pid) {
  //1、恢复虚拟机,兼容不同Android版本
  if (android_api_ < __ANDROID_API_R__) {
    resume_vm_fnc_();
  }
  ...
  int status;
  for (;;) {
    //2、waitpid,等待子进程结束
    if (waitpid(pid, &status, 0) != -1 || errno != EINTR) {
      //进程异常退出
      if (!WIFEXITED(status)) {
        ALOGE("Child process %d exited with status %d, terminated by signal %d",
              pid, WEXITSTATUS(status), WTERMSIG(status));
        return false;
      }
      return true;
    }
    return false;
  }
}

这里主要是利用Linux的waitpid函数,主进程可以等待子进程dump结束,然后再返回执行内存镜像文件分析操作。

5.6.3 内存镜像分析

前面一步已经通过Debug.dumpHprofData(path)拿到内存镜像文件,接下来就开启一个后台服务来处理

//->HeapAnalysisService
  override fun onHandleIntent(intent: Intent?) {
    ...
    kotlin.runCatching {
      //1、通过shark将hprof文件转换成HeapGraph对象
      buildIndex(hprofFile)
    }
    ...
    //2、将设备信息封装成json
    buildJson(intent)
    kotlin.runCatching {
      //3、过滤泄漏对象,有几个规制
      filterLeakingObjects()
    }
    ...
    kotlin.runCatching {
      // 4、gcRoot是否可达,判断内存泄漏
      findPathsToGcRoot()
    }
    ...
    //5、泄漏信息填充到json中,然后结束了
    fillJsonFile(jsonFile)
    //通知主进程内存泄漏分析成功
    resultReceiver?.send(AnalysisReceiver.RESULT_CODE_OK, null)
    //这个服务是在单独进程,分析完就退出
    System.exit(0);
  }

内存镜像分析的流程如下:

  1. 通过shark这个开源库将hprof文件转换成HeapGraph对象
  2. 收集设备信息,封装成json,现场信息很重要
  3. filterLeakingObjects:过滤出泄漏的对象,有一些规制,例如已经destroyed和finished的activity、fragment manager为空的fragment、已经destroyed的window等。
  4. findPathsToGcRoot:内存泄漏的对象,查找其到GcRoot的路径,通过这一步就可以揪出内存泄漏的原因
  5. fillJsonFile:格式化输出内存泄漏信息

小结

线上Java内存泄漏监控方案分析,这里小结一下:

  1. 挂起当前进程,然后通过fork创建子进程;
  2. fork会返回两次,一次是子进程,一次是父进程,通过返回的pid可以判断是子进程还是父进程;
  3. 如果是父进程返回,则通过resumeAndWait恢复进程,然后当前线程阻塞等待子进程结束;
  4. 如果子进程返回,通过Debug.dumpHprofData(path)读取内存镜像信息,这个会比较耗时,执行结束就退出子进程;
  5. 子进程退出,父进程的resumeAndWait就会返回,这时候就可以开启一个服务,后台分析内存泄漏情况,这块跟LeakCanary的分析内存泄漏原理基本差不多。

不画图了,结合源码看应该可以理解。

5.7 native内存泄漏监控

对于Java内存泄漏监控,线下我们可以使用LeakCanary、线上可以使用KOOM,而对于native内存泄漏应该如何监控呢?

方案如下:

首先要了解native层 申请内存的函数:malloc、realloc、calloc、memalign、posix_memalign释放内存的函数:free

  1. hook申请内存和释放内存的函数

微信图片_20220906141328.jpg

分配内存的时候,收集堆栈、内存大小、地址、线程等信息,存放到map中,在释放内存的时候从map中移除。

微信图片_20220906141332.jpg

那怎么判断native内存泄漏呢?

  • 周期性的使用 mark-and-sweep 分析整个进程 Native Heap,获取不可达的内存块信息「地址、大小」
  • 获取到不可达的内存块的地址后,可以从我们的Map中获取其堆栈、内存大小、地址、线程等信息。

具体实现可以参考:koom-native-leak

总结

本文从线上OOM问题入手,介绍了OOM原理, 以及OOM优化方案和监控方案,基本上都是大厂开源出来的比较成熟的方案:

  1. 对于pthread_create OOM问题,介绍了无侵入性的new Thread优化、无侵入性的线程池优化、以及线程泄漏监控;
  2. 对于文件描述符过多问题,介绍了原理以及文件描述符监控方案、IO监控方案;
  3. 对于Java内存不足导致的OOM、介绍了无侵入性图片自动压缩方案、两种无侵入性的大图监控方案、Java内存泄漏监控的线下方案和线上方案、以及native内存泄漏监控方案。

大厂对外开源的技术非常多,但不一定最优,我们在学习过程中可以多加思考, 例如线程优化,booster 对于new Thread的优化只是设置了线程名,有助于分析问题,而经过我的猜想和验证,通过字节码插桩,将new Thread无侵入性替换成线程池调用,才是真正意义上的线程优化。

相关文章
|
3月前
|
消息中间件 存储 Java
jvm性能调优实战 - 47超大数据量处理系统是如何OOM的
jvm性能调优实战 - 47超大数据量处理系统是如何OOM的
42 0
|
8月前
|
运维 监控 Java
内存溢出+CPU占用过高:问题排查+解决方案+复盘(超详细分析教程)
全网最全的内存溢出CPU占用过高排查文章,包含:问题出现现象+临时解决方案+复现问题+定位问题发生原因+优化代码+优化后进行压测,上线+复盘
1392 5
|
3月前
|
监控 数据可视化 Java
jvm性能调优实战 - 31从测试到上线_如何分析JVM运行状况及合理优化
jvm性能调优实战 - 31从测试到上线_如何分析JVM运行状况及合理优化
53 1
|
3月前
|
存储 Java 数据库
jvm性能调优 - 06线上应用部署JVM实战_堆内存预估与设置
jvm性能调优 - 06线上应用部署JVM实战_堆内存预估与设置
61 0
|
27天前
|
SQL 运维 NoSQL
【Redis 故障排查】「连接失败问题排查和解决」带你总体分析CPU及内存的使用率高问题排查指南及方案
【Redis 故障排查】「连接失败问题排查和解决」带你总体分析CPU及内存的使用率高问题排查指南及方案
33 0
|
3月前
|
存储 SQL Java
jvm性能调优实战 - 27亿级数据量的实时分析引擎,为啥频繁发生Full GC
jvm性能调优实战 - 27亿级数据量的实时分析引擎,为啥频繁发生Full GC
45 0
|
监控 Java Linux
大厂的OOM优化和监控方案(二)
大厂的OOM优化和监控方案(二)
大厂的OOM优化和监控方案(二)
|
11月前
|
Arthas 存储 Java
9种OOM常见原因及解决方案
9种OOM常见原因及解决方案
634 0
|
SQL 缓存 监控
监控指标解读和JVM 分析&调优
监控指标解读和JVM 分析&调优
监控指标解读和JVM 分析&调优
|
存储 运维 Java
【JVM性能优化】服务发生OOM故障定位方案
【JVM性能优化】服务发生OOM故障定位方案
260 0
【JVM性能优化】服务发生OOM故障定位方案