技术解读:Dragonfly 基于 P2P 的智能镜像加速系统 | 龙蜥技术

简介: 结合 Dragonfly 子项目 Nydus 进行按需加载可以最大限度提升镜像下载速度。

编者按:上世纪末期,基于 C/S 模式的思想,人们发展了 HTTP 、 FTP 等应用层协议。然而 C/S 模式的弊端很明显:服务器的负载过大,下载速率过慢。基于上述背景,有人结合 P2P 网络与负载均衡的思想,提出 P2P 下载模式。本文整理自龙蜥大讲堂第 40 期,精彩分享视频回放已上传至龙蜥官网(首页-动态-视频),欢迎查看!

640 (21).png

背景

网络下载

提起网络下载领域,你应该首先会想到基于 TCP/IP 协议簇的 C/S 模式。这种模式希望每一个客户机都与服务器建立 TCP 连接,服务器轮询监听 TCP 连接并依次响应,如下图:

640 (1).png上世纪末期,基于 C/S 模式的思想,人们发展了 HTTP 、 FTP 等应用层协议。然而 C/S 模式的弊端很明显:服务器的负载过大,下载速率过慢。随着互联网规模的增大以及客户对于下载数据大小,下载速率等需求的上升,这些弊端被不断放大。

P2P 下载原理

基于上述背景,有人结合 P2P 网络与负载均衡的思想,提出 P2P 下载模式。这种模式不再把所有的下载压力丢给服务器,服务器只负责传递文件元数据,真正的文件下载连接建立在客户机与客户机之间。同时一个文件可以被分片为多个块,同一个文件中不同的块可以在不同的客户机之上下载,使得下载文件在 P2P 网络中动态流通,大幅提升了下载效率,如下图:

640 (2).png去中心化的 P2P 下载基于 DHT 技术,它采用分布式全网方式来进行信息的存储和检索。所有信息均以哈希表条目形式加以存储,这些条目被分散地存储在各个节点上,从而以全网方式构成一张巨大的分布式哈希表。在此基础上做到对单服务器的去中心化,哈希表负责对负载的分摊,将全网负载均摊到多个机器之上。


Dragonfly 简介及架构概述


Dragonfly 是一款基于 P2P 的智能镜像和文件分发工具。它旨在提高大规模文件传输的效率和速率,最大限度地利用网络带宽。在应用分发、缓存分发、日志分发和镜像分发等领域被大规模使用。

原理

Dragonfly 结合 C/S 架构与 P2P 架构的优点。它提供面向客户的 C/S 架构下载模式。同时它也提供面向服务器集群的 P2P 回源模式,与传统 P2P 不同的是,对等网络建立在 Scheduler 内部,目标是最大化 P2P 内部下载效率,如下图:

640 (3).png

架构简介

Dragonfly 面向镜像分发和文件分发,结合 P2P 网络和服务器集群的思想,向用户提供稳定的、高效的下载服务。Dragonfly 希望在服务器内部构建 P2P 网络,将服务器的不同主机节点分为 Manager、Scheduler、Seed Peer 以及 Peer 四个角色,分别提供不同的功能。


其中 Manager 提供总体配置功能,拉取其他角色的配置并相互通信。Scheduler 提供下载调度功能,其调度结果直接影响下载速率。Seed Peer 负责回源下载,从外部网络中拉取所需的镜像或文件。Peer 作为 C/S 架构中的服务器,通过多种协议向客户提供下载功能。架构图如下:

640 (4).png其中,Seed Peer 支持使用多种协议从外部网络中回源下载,同时也支持当作集群当中一个 Peer 使用。Peer 提供基于多种协议的下载服务,也提供为镜像仓库或其他下载任务的代理服务。


组件详解

Manager

Manager 在多 P2P 集群部署的时候扮演管理者的角色,提供前端控制台方便用户进行可视化操作 P2P 集群。其主要提供动态配置管理、维护集群稳定性以及维护多套 P2P 集群的关联关系等功能。对于维护集群整体稳定性 Manager 和各个服务保持 Keepalive 保证能够在实例异常情况下将异常实例进行剔除。动态配置管理可以在 Manager 上面操作各个组件的控制单元,比如控制 Peer 和 Seed Peer 的负载数,Scheduler 调度 Parent 的个数等。Manager 也可以维护多套 P2P 集群关联关系,一个 Scheduler Cluster、一个 Seed Peer Cluster 和若干个 Peer 组成一个完整的 P2P 集群,当然不同 P2P 集群可以是网络隔离的。正常情况下采用一个机房一套 P2P 集群,统一由一个 Manager 管理多个 P2P 集群。

Scheduler

Scheduler 主要工作就是为当前下载节点寻找最优父节点并触发 Seed Peer 进行回源下载。在适当时候让 Peer 进行回源下载。Scheduler 在启动时,先向 Manager 注册,注册成功后初始化动态配置客户端,并从 Manager 拉取动态配置,接下来启动 Scheduler 自身所需的服务。

Scheduler 的核心就是选取一组最优 Parent 节点供当前下载 Peer 进行下载。Scheduler 面向 Task,一次 Task 就是一次完整的下载任务,在 Scheduler 中存储 Task 信息和相应 P2P 下载网络的 DAG。调度过程是首先过滤异常 Parent 节点,根据多维度进行过滤,比如判断该 Peer 是否是 BadNode,判断逻辑为假设每个节点的响应时长都遵循正态分布,若一个节点目前的响应时长处于 6σ 范围之外,那么认为该节点是 BadNode,剔除该节点。再根据历史下载特征值对剩余待定 Parent 节点进行打分,返回一组分数最高的 Parent 提供给当前 Peer 进行下载。640 (5).png

Seed Peer 和 Peer

Seed Peer 和 Peer 有很多相似之处。他们都是基于 Dfdaemon,不同的是 Seed Peer 采用 Seed Peer 模式,支持主动触发回源下载。Peer 采用 Peer 模式,作为 C/S 架构中的服务器向用户提供下载功能,支持被 Scheduler 被动触发回源下载。这表明 Peer 和 Seed Peer 的关系不是固定的,一个 Peer 可以通过回源使自己成为 Seed Peer,Seed Peer 也可以改动运行状态变为 Peer,Scheduler 会动态地对相应 DAG 进行改动。另外 Seed Peer 和 Peer 都需要参与调度下载过程当中,Scheduler 可能会选取 Seed Peer 或者 Peer 作为父节点向其他 Peer 提供下载功能。

Dfstore 和 Dfcache

Dfcache 是 dragonfly 的缓存客户端,它与 dfdaemon 通信并对 P2P 网络中的文件进行操作,其中 P2P 网络充当缓存系统。可以在 Scheduler 中存储相应 Task 和 DAG。

Dfstore 是 dragonfly 存储客户端. 其可以依赖不同类型的对象存储服务作为 Backend,提供稳定的存储方案,现在支持 S3 和 OSS 。Dfstore 依赖 Backend 对象存储服务结合 P2P 本身的加速特点。可做到快写快读,并且能够节省回源以及跨机房流量,减少源站压力。


优势

稳定性

Dragonfly 会自动隔离异常节点来提高下载稳定性,Dragonfly 中各个组件通过 Keepalive 与 Manager 进行联系,Manager 能够保证返回给 Peer 的 Scheduler 地址和返回给 Scheduler 的 Seed Peer 地址都是可用的。不可用的 Scheduler 和 Seed Peer 不会被 Manager 推给需要进行下载任务的 Peer 或 Scheduler,从而达到隔离异常节点的目的,这也是实例维度的异常隔离,如下图:

640 (6).png另外 Dragonfly 在调度时以 Task 为单位,也确保了整个调度过程的稳定性。在收到一个新的 Task 调度请求之后,Scheduler 触发 Seed Peer 进行回源下载;在收到一个已有 Task 的调度请求之后,Scheduler 调度最优 Parent Peer 集合返回给 Peer。这个逻辑确保了无论 Task 是否下载过,Dragonfly 都可以对其进行处理。此外在 Scheduler 调度过程中,对响应时长过慢的 Peer ,认为目前是异常节点,将不会作为 Parent Peer 被返还。这也是 Task 维度的异常隔离。

高效性

Dragonfly 采用 P2P 进行服务端内部的回源,P2P 下载本身即分摊负载,将每个服务端节点的负载降到最低,有以下几个细节保证了 Dragonfly 下载的高效性:

  • Scheduler 通过为每个可能的 Parent 打分,返回给 Peer 目前局部最优的 Parent 集合,Peer 基于此集合做下载。
  • 下载过程基于 Task,每个 Task 将待下载文件分为多个 Piece,Peer 拿到了最优的 Parent 之后,向此集合广播每个 Piece 的下载请求,集合中的 Parent 收到该请求后返回给 Peer 对应 Piece 的元信息,Peer 将第一个收到的 Piece 元信息所对应的 Parent Peer 作为该 Piece 的实际下载源。该做法考虑到 Scheduler 返回可用 Parent 到触发下载这段时间内可能的变化,同时对不同的 Piece,允许 Peer 向不同的下载源获取数据。
  • Dfdaemon 分为 Seed Peer 模式和 Peer 模式,允许 Seed Peer 和 Peer 进行切换,可以根据实际需求改变作为 Seed Peer 和 Peer 的机器数目,动态调整更适应实际情况。

简单易用

Dragonfly 提供 Helm Charts、Docker Compose、Docker Image 以及二进制的多种部署方式。用户可以快速一键部署进行一次简单 POC,并且也可以基于 Helm Charts 进行大规模生产部署。当然 Dragonfly 各个服务都有完善的 Metrics 也提供现成的 Granafa 模版,方便用户观察 P2P 的流量走势。


Dragonfly 作为 CNCF 在镜像加速领域标准解决方案,结合 Dragonfly 子项目 Nydus 进行按需加载可以最大限度提升镜像下载速度,未来我们也会继续努力建设镜像加速领域的生态链。感谢所有参与到社区建设的同学,希望有更多对镜像加速领域或 P2P 感兴趣的同学加入(文末扫描二维码或搜索钉钉群号:44701621进群交流)到我们的社区当中。


关于视频回放和课件获取

【视频回放】:视频回访已上传至龙蜥官网https://openanolis.cn/video 查看。


【PPT课件获取】:关注微信公众号(OpenAnolis),回复“龙蜥课件” 即可获取。有任何疑问请随时咨询龙蜥助手—小龙(微信:openanolis_assis)


相关链接:

龙蜥云原生SIG地址链接:

https://openanolis.cn/sig/cloud-native

项目地址:

https://github.com/dragonflyoss/Dragonfly2

官网:

https://d7y.io/

Slack:

https://cloud-native.slack.com/messages/dragonfly/

Twitter:

https://twitter.com/dragonfly_oss

Developer Group Email:

dragonfly-developers@googlegroups.com


—— 完 ——

加入龙蜥社群


加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。欢迎开发者/用户加入龙蜥社区(OpenAnolis)交流,共同推进龙蜥社区的发展,一起打造一个活跃的、健康的开源操作系统生态!

640 (7).png

关于龙蜥社区


龙蜥社区(OpenAnolis)是由企业单位、事业单位、社会团体、个人等在共建、共治、共享的基础上组成的非营利性开源社区。龙蜥社区成立于 2020 年 9 月,旨在构建一个开放、平等、协作、创新的 Linux 上游发行版社区及创新平台。


龙蜥社区成立的短期目标是开发龙蜥操作系统(Anolis OS)作为 CentOS 停服后的应对方案,构建一个兼容国际 Linux 主流厂商的社区发行版。中长期目标是探索打造一个面向未来的操作系统,建立统一的开源操作系统生态,孵化创新开源项目,繁荣开源生态。


目前,Anolis OS 8.6已发布,更多龙蜥自研特性,支持 X86_64 、RISC-V、Arm64、LoongArch 架构,完善适配 Intel、兆芯、鲲鹏、龙芯等芯片,并提供全栈国密和机密计算支持。

欢迎下载:https://openanolis.cn/download

加入我们,一起打造面向未来的开源操作系统!https://openanolis.cn

相关文章
|
Dragonfly 缓存 Kubernetes
Dragonfly 在 Kubernetes 多集群环境下分发文件和镜像
Dragonfly 在 Kubernetes 多集群环境下分发文件和镜像
Dragonfly 在 Kubernetes 多集群环境下分发文件和镜像
|
Kubernetes Linux API
[没接触过kubevirt?]15分钟快速入门kubevirt
什么是kubevirt? kubevirt是一个容器方式运行虚拟机的项目。`kubevirt`是附加`kubernetes`集群上的,它是通过 `CustomResourceDefinition(CRD)`部署到`Kubernetes API`变成资源对象。使用方式类似创建`deploy、pod`......这些资源清单。
5824 0
[没接触过kubevirt?]15分钟快速入门kubevirt
|
PHP 数据库 数据安全/隐私保护
|
存储 缓存 弹性计算
阿里巴巴开源 容器镜像加速技术DADI 上手指南
阿里资深技术专家在阿里云开发者社区特别栏目《周二开源日》直播中,介绍刚于3月份开源的容器镜像加速器项目 DADI ,并带大家快速上手使用。本文为直播内容文字整理,看直播回放,请点击文首链接~
阿里巴巴开源 容器镜像加速技术DADI 上手指南
|
存储 Kubernetes Cloud Native
阿里巴巴开源容器镜像加速技术
近日阿里巴巴开源了其云原生容器镜像加速技术,其推出的overlaybd镜像格式,相比于传统的分层tar包文件格式,实现了基于网络的按需读取,从而使得容器可以快速启动。
|
缓存 NoSQL 调度
Tair:基于KV缓存的推理加速服务
Tair 是阿里云基于KV缓存的推理加速服务,旨在优化大模型推理过程中的性能与资源利用。内容分为三部分:首先介绍大模型推理服务面临的挑战,如性能优化和服务化需求;其次讲解Nvidia TensorRT-LLM推理加速库的特点,包括高性能、功能丰富和开箱即用;最后重点介绍基于KVCache优化的推理加速服务,通过Tair的KV缓存技术提升推理效率,特别是在处理长上下文和多人对话场景中表现出色。整体方案结合了硬件加速与软件优化,实现了显著的性能提升和成本降低。
1192 3
|
资源调度 调度 混合部署
Koordinator 助力云原生应用性能提升,小红书混部技术实践
本文基于 2023 云栖大会上关于 Koordinator 分享的实录,介绍小红书通过规模化落地混部技术来大幅提升集群资源效能,降低业务资源成本。
|
Dragonfly Kubernetes 调度
P2P镜像分发:Harbor+Dragonfly优化k8s集群镜像拉取速度(二)
本篇文章则分享在大规模的kubernetes集群中,通过Harbor与Dragonfly来优化镜像的拉取速度。
2522 0
|
数据采集 机器学习/深度学习 人工智能
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场
|
存储 缓存 Dragonfly
如何进行容器镜像加速?| 深度揭秘阿里云 Serverless Kubernetes(3)
容器相比虚拟机最突出的特点之一便是轻量化和快速启动。相比虚拟机动辄十几个 G 的镜像,容器镜像只包含应用以及应用所需的依赖库,所以可以做到几百 M 甚至更少。但即便如此,几十秒的镜像拉取还是在所难免,如果镜像更大,则耗费时间更长。
1982 0
如何进行容器镜像加速?| 深度揭秘阿里云 Serverless Kubernetes(3)