1亿条数据批量插入 MySQL,哪种方式最快?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 这几天研究mysql优化中查询效率时,发现测试的数据太少(10万级别),利用 EXPLAIN 比较不同的 SQL 语句,不能够得到比较有效的测评数据,大多模棱两可,不敢通过这些数据下定论。所以通过随机生成人的姓名、年龄、性别、电话、email、地址 ,向mysql数据库大量插入数据,便于用大量的数据测试 SQL 语句优化效率。、在生成过程中发现使用不同的方法,效率天差万别。
  • 1、先上Mysql数据库,随机生成的人员数据图。分别是ID、姓名、性别、年龄、Email、电话、住址。
  • 2、本次测评一共通过三种策略,五种情况,进行大批量数据插入测试
  • 2.1 Mybatis 轻量级框架插入(无事务)
  • 2.2 采用JDBC直接处理(开启事务、关闭事务)
  • 2.3 采用JDBC批处理(开启事务、无事务)
  • 3 总结
  • 4 补充

这几天研究mysql优化中查询效率时,发现测试的数据太少(10万级别),利用 EXPLAIN 比较不同的 SQL 语句,不能够得到比较有效的测评数据,大多模棱两可,不敢通过这些数据下定论。

所以通过随机生成人的姓名、年龄、性别、电话、email、地址 ,向mysql数据库大量插入数据,便于用大量的数据测试 SQL 语句优化效率。、在生成过程中发现使用不同的方法,效率天差万别。

1、先上Mysql数据库,随机生成的人员数据图。分别是ID、姓名、性别、年龄、Email、电话、住址。

下图一共三千三百万数据:

微信图片_20220906095828.png

在数据量在亿级别时,别点下面按钮,会导致Navicat持续加载这亿级别的数据,导致电脑死机。~觉着自己电脑配置不错的可以去试试,可能会有惊喜

微信图片_20220906095836.png

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。

项目地址:https://github.com/YunaiV/ruoyi-vue-pro

2、本次测评一共通过三种策略,五种情况,进行大批量数据插入测试

策略分别是:

  • Mybatis 轻量级框架插入(无事务)
  • 采用JDBC直接处理(开启事务、无事务)
  • 采用JDBC批处理(开启事务、无事务)

测试结果:

Mybatis轻量级插入 -> JDBC直接处理 -> JDBC 批处理。

JDBC 批处理,效率最高
第一种策略测试:

2.1 Mybatis 轻量级框架插入(无事务)

Mybatis是一个轻量级框架,它比hibernate轻便、效率高。

但是处理大批量的数据插入操作时,需要过程中实现一个ORM的转换,本次测试存在实例,以及未开启事务,导致mybatis效率很一般。

这里实验内容是:

  • 利用Spring框架生成mapper实例、创建人物实例对象
  • 循环更改该实例对象属性、并插入。
//代码内无事务
 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
@org.junit.Test
    public void insertBigData2()
    {
        //加载Spring,以及得到PersonMapper实例对象。这里创建的时间并不对最后结果产生很大的影响
        ApplicationContext context = new ClassPathXmlApplicationContext("applicationContext.xml");
        PersonMapper pMapper = (PersonMapper) context.getBean("personMapper");
        //创建一个人实例
        Person person = new Person();
        //计开始时间
        long bTime = System.currentTimeMillis();
        //开始循环,循环次数500W次。
        for(int i=0;i<5000000;i++)
        {
            //为person赋值
            person.setId(i);
            person.setName(RandomValue.getChineseName());
            person.setSex(RandomValue.name_sex);
            person.setAge(RandomValue.getNum(1, 100));
            person.setEmail(RandomValue.getEmail(4,15));
            person.setTel(RandomValue.getTel());
            person.setAddress(RandomValue.getRoad());
            //执行插入语句
            pMapper.insert(person);
            begin++;
        }
        //计结束时间
        long eTime = System.currentTimeMillis();
        System.out.println("插入500W条数据耗时:"+(eTime-bTime));
    }

本想测试插入五百万条数据,但是实际运行过程中太慢,中途不得不终止程序。最后得到52W数据,大约耗时两首歌的时间(7~9分钟)。随后,利用mybatis向mysql插入10000数据。

结果如下:

利用mybatis插入 一万 条数据耗时:28613,即28.6秒

微信图片_20220906095938.png

第二种策略测试:

2.2 采用JDBC直接处理(开启事务、关闭事务)

采用JDBC直接处理的策略,这里的实验内容分为开启事务、未开启事务是两种,过程均如下:

  • 利用PreparedStatment预编译
  • 循环,插入对应数据,并存入

事务对于插入数据有多大的影响呢? 看下面的实验结果:

//该代码为开启事务
 private long begin = 33112001;//起始id
    private long end = begin+100000;//每次循环插入的数据量
    private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&amp;characterEncoding=UTF-8";
    private String user = "root";
    private String password = "0203";
@org.junit.Test
    public void insertBigData3() {
        //定义连接、statement对象
        Connection conn = null;
        PreparedStatement pstm = null;
        try {
            //加载jdbc驱动
            Class.forName("com.mysql.jdbc.Driver");
            //连接mysql
            conn = DriverManager.getConnection(url, user, password);
             //将自动提交关闭
             conn.setAutoCommit(false);
            //编写sql
            String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
            //预编译sql
            pstm = conn.prepareStatement(sql);
            //开始总计时
            long bTime1 = System.currentTimeMillis();
            //循环10次,每次一万数据,一共10万
            for(int i=0;i<10;i++) {
                //开启分段计时,计1W数据耗时
                long bTime = System.currentTimeMillis();
                //开始循环
                while (begin < end) {
                    //赋值
                    pstm.setLong(1, begin);
                    pstm.setString(2, RandomValue.getChineseName());
                    pstm.setString(3, RandomValue.name_sex);
                    pstm.setInt(4, RandomValue.getNum(1, 100));
                    pstm.setString(5, RandomValue.getEmail(4, 15));
                    pstm.setString(6, RandomValue.getTel());
                    pstm.setString(7, RandomValue.getRoad());
                    //执行sql
                    pstm.execute();
                    begin++;
                }
                //提交事务
                conn.commit();
                //边界值自增10W
                end += 10000;
                //关闭分段计时
                long eTime = System.currentTimeMillis();
                //输出
                System.out.println("成功插入1W条数据耗时:"+(eTime-bTime));
            }
            //关闭总计时
            long eTime1 = System.currentTimeMillis();
            //输出
            System.out.println("插入10W数据共耗时:"+(eTime1-bTime1));
        } catch (SQLException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e1) {
            e1.printStackTrace();
        }
    }

我们首先利用上述代码测试无事务状态下,插入10W条数据需要耗时多少。

如图:

微信图片_20220906100102.png

成功插入1W条数据耗时:21603
成功插入1W条数据耗时:20537
成功插入1W条数据耗时:20470
成功插入1W条数据耗时:21160
成功插入1W条数据耗时:23270
成功插入1W条数据耗时:21230
成功插入1W条数据耗时:20372
成功插入1W条数据耗时:22608
成功插入1W条数据耗时:20361
成功插入1W条数据耗时:20494
插入10W数据共耗时:212106

实验结论如下:

在未开启事务的情况下,平均每 21.2 秒插入 一万 数据。

接着我们测试开启事务后,插入十万条数据耗时,如图:

微信图片_20220906100230.png

成功插入1W条数据耗时:4938
成功插入1W条数据耗时:3518
成功插入1W条数据耗时:3713
成功插入1W条数据耗时:3883
成功插入1W条数据耗时:3872
成功插入1W条数据耗时:3873
成功插入1W条数据耗时:3863
成功插入1W条数据耗时:3819
成功插入1W条数据耗时:3933
成功插入1W条数据耗时:3811
插入10W数据共耗时:39255

实验结论如下:

开启事务后,平均每 3.9 秒插入 一万 数据

第三种策略测试:

2.3 采用JDBC批处理(开启事务、无事务)

采用JDBC批处理时需要注意一下几点:

1、在URL连接时需要开启批处理、以及预编译

String url = “jdbc:mysql://localhost:3306/User?rewriteBatched
-Statements=true&useServerPrepStmts=false”;

2、PreparedStatement预处理sql语句必须放在循环体外

代码如下:

private long begin = 33112001;//起始id
private long end = begin+100000;//每次循环插入的数据量
private String url = "jdbc:mysql://localhost:3306/bigdata?useServerPrepStmts=false&rewriteBatchedStatements=true&useUnicode=true&amp;characterEncoding=UTF-8";
private String user = "root";
private String password = "0203";
@org.junit.Test
public void insertBigData() {
    //定义连接、statement对象
    Connection conn = null;
    PreparedStatement pstm = null;
    try {
        //加载jdbc驱动
        Class.forName("com.mysql.jdbc.Driver");
        //连接mysql
        conn = DriverManager.getConnection(url, user, password);
  //将自动提交关闭
  // conn.setAutoCommit(false);
        //编写sql
        String sql = "INSERT INTO person VALUES (?,?,?,?,?,?,?)";
        //预编译sql
        pstm = conn.prepareStatement(sql);
        //开始总计时
        long bTime1 = System.currentTimeMillis();
        //循环10次,每次十万数据,一共1000万
        for(int i=0;i<10;i++) {
            //开启分段计时,计1W数据耗时
            long bTime = System.currentTimeMillis();
            //开始循环
            while (begin < end) {
                //赋值
                pstm.setLong(1, begin);
                pstm.setString(2, RandomValue.getChineseName());
                pstm.setString(3, RandomValue.name_sex);
                pstm.setInt(4, RandomValue.getNum(1, 100));
                pstm.setString(5, RandomValue.getEmail(4, 15));
                pstm.setString(6, RandomValue.getTel());
                pstm.setString(7, RandomValue.getRoad());
                //添加到同一个批处理中
                pstm.addBatch();
                begin++;
            }
            //执行批处理
            pstm.executeBatch();
           //提交事务
  //        conn.commit();
            //边界值自增10W
            end += 100000;
            //关闭分段计时
            long eTime = System.currentTimeMillis();
            //输出
            System.out.println("成功插入10W条数据耗时:"+(eTime-bTime));
        }
        //关闭总计时
        long eTime1 = System.currentTimeMillis();
        //输出
        System.out.println("插入100W数据共耗时:"+(eTime1-bTime1));
    } catch (SQLException e) {
        e.printStackTrace();
    } catch (ClassNotFoundException e1) {
        e1.printStackTrace();
    }
}

首先开始测试

无事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

微信图片_20220906100542.png

成功插入10W条数据耗时:3832
成功插入10W条数据耗时:1770
成功插入10W条数据耗时:2628
成功插入10W条数据耗时:2140
成功插入10W条数据耗时:2148
成功插入10W条数据耗时:1757
成功插入10W条数据耗时:1767
成功插入10W条数据耗时:1832
成功插入10W条数据耗时:1830
成功插入10W条数据耗时:2031
插入100W数据共耗时:21737

实验结果:

使用JDBC批处理,未开启事务下,平均每 2.1 秒插入 十万 条数据

接着测试

开启事务,每次循环插入10W条数据,循环10次,一共100W条数据。

结果如下图:

微信图片_20220906100613.png

成功插入10W条数据耗时:3482
成功插入10W条数据耗时:1776
成功插入10W条数据耗时:1979
成功插入10W条数据耗时:1730
成功插入10W条数据耗时:1643
成功插入10W条数据耗时:1665
成功插入10W条数据耗时:1622
成功插入10W条数据耗时:1624
成功插入10W条数据耗时:1779
成功插入10W条数据耗时:1698
插入100W数据共耗时:19003

实验结果:

使用JDBC批处理,开启事务,平均每 1.9 秒插入 十万 条数据

基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。

项目地址:https://github.com/YunaiV/onemall

3 总结

能够看到,在开启事务下 JDBC直接处理 和 JDBC批处理 均耗时更短。

  • Mybatis 轻量级框架插入 , mybatis在我这次实验被黑的可惨了,哈哈。实际开启事务以后,差距不会这么大(差距10倍)。大家有兴趣的可以接着去测试
  • JDBC直接处理,在本次实验,开启事务和关闭事务,耗时差距5倍左右,并且这个倍数会随着数据量的增大而增大。因为在未开启事务时,更新10000条数据,就得访问数据库10000次。导致每次操作都需要操作一次数据库。
  • JDBC批处理,在本次实验,开启事务与关闭事务,耗时差距很微小(后面会增加测试,加大这个数值的差距)。但是能够看到开启事务以后,速度还是有提升。

结论:设计到大量单条数据的插入,使用JDBC批处理和事务混合速度最快

实测使用批处理+事务混合插入1亿条数据耗时:174756毫秒

4 补充

JDBC批处理事务,开启和关闭事务,测评插入20次,一次50W数据,一共一千万数据耗时:

1、开启事务(数据太长不全贴了)

插入1000W数据共耗时:197654

2、关闭事务(数据太长不全贴了)

插入1000W数据共耗时:200540

还是没很大的差距~

借用:

微信图片_20220906100757.png

分别是:

  • 不用批处理,不用事务;
  • 只用批处理,不用事务;
  • 只用事务,不用批处理;
  • 既用事务,也用批处理;(很明显,这个最快,所以建议在处理大批量的数据时,同时使用批处理和事务)
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
23天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
88 6
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
160 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
1月前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
|
2月前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
|
2月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
74 14
|
2月前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
68 9
|
2月前
|
SQL 关系型数据库 MySQL
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
61 1
|
14天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
14天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
42 3
|
14天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
54 2