ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

image.png

一、环境:

版本均未5.2.0

https://www.elastic.co/cn/downloads/past-releases


1、filebeat:

https://www.elastic.co/cn/downloads/past-releases/filebeat-5-2-0

2、logstash

https://www.elastic.co/cn/downloads/past-releases/logstash-5-2-0

3、elasticsearch:

https://www.elastic.co/cn/downloads/past-releases/elasticsearch-5-2-0

4、kibana:

https://www.elastic.co/cn/downloads/past-releases/kibana-5-2-0


二、日志准备

使用python脚本定时生成模拟日志

generator_log.py
# -*- encoding:utf-8 -*-
import time
from chinesename import ChineseName
cn = ChineseName()
while True:
    now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    message = "{} {}\n".format(now, cn.getName())
    print(message)
    with open("demo.log", "a", encoding="utf-8") as f:
        f.write(message)
    # 每3秒生成一条日志     
    time.sleep(3)

日志示例(日期 姓名):

2019-06-13 18:01:31 容休

三、filebeat

1、配置

修改配置文件filebeat.yml
可以选择直接将数据传入Elasticsearch,也可以传入Logstash处理
filebeat.prospectors:
- input_type: log
  paths:
# 配置需要收集的文件地址
    - /var/log/*.log 
#-------------------------- Elasticsearch output ------------------------------
# output.elasticsearch:
  # hosts: ["localhost:9200"]
#----------------------------- Logstash output --------------------------------
output.logstash:
  hosts: ["localhost:5044"]

2、启动:

./filebeat -e -c filebeat.yml -d "publish"

参考:开始使用Filebeat




四、logstash

1、匹配说明

(1)内置匹配

%{SYNTAX:SEMANTIC}

(2)ruby正则


(?<name>pattern)

关于Ruby的正则:

Ruby 正则表达式: https://www.runoob.com/ruby/ruby-regular-expressions.html

Ruby 正则匹配测试: https://rubular.com/


2、配置

新建一个文件夹存放自定义匹配模式

$ mkdir ./patterns
$ cat ./patterns/datetime.re
DATETIME \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}

es-pipeline.conf


input {
    beats {
        port => "5044"
    }
}
filter {
    grok {
        patterns_dir => ["./patterns"]
        match => { 
            "message" => "%{DATETIME:logdate} (?<text>(.*))"
        }
        remove_field  => "message"
   }
   date {
        match => ["logdate", "yyyy-MM-dd HH:mm:ss"]
    }
}
output {
    stdout { codec => rubydebug }
    elasticsearch {
        hosts => [ "localhost:9200" ]
    }
}

3、启动logstash

# 解析配置文件并报告任何错误
$ ./bin/logstash -f es-pipeline.conf --config.test_and_exit
# 启用自动配置加载
$ ./bin/logstash -f es-pipeline.conf --config.reload.automatic


五、kibana中查询结果

1、启动

$ elasticsearch
$ kibana

2、查询


GET /logstash-2019.06.13/_search
{
  "sort": [
    {
      "@timestamp": {
        "order": "desc"
      }
    }
  ]
}
# 查询结果
{
  "_index": "logstash-2019.06.13",
  "_type": "log",
  "_id": "AWtQTwv8vaBpxF8s4wUp",
  "_score": null,
  "_source": {
    "@timestamp": "2019-06-13T10:08:02.000Z",
    "offset": 197738,
    "logdate": "2019-06-13 18:08:02",
    "@version": "1",
    "beat": {
      "hostname": "bogon",
      "name": "bogon",
      "version": "5.2.0"
    },
    "input_type": "log",
    "host": "bogon",
    "source": "/Users/qmp/Desktop/log/demo.log",
    "text": "伯镟",
    "type": "log",
    "tags": [
      "beats_input_codec_plain_applied"
    ]
  },
  "sort": [
    1560420482000
  ]
}

图形化查看日志数量曲线图

image.png


参考

使用Logstash filter grok过滤日志文件

Logstash使用grok进行日志过滤

Logstash介绍

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1天前
|
弹性计算 运维 Serverless
超值选择:阿里云Elasticsearch Serverless在企业数据检索与分析中的高性能与灵活性
本文介绍了阿里云Elasticsearch Serverless服务的高性价比与高度弹性灵活性。
|
26天前
|
存储 JSON Java
ELK 圣经:Elasticsearch、Logstash、Kibana 从入门到精通
ELK是一套强大的日志管理和分析工具,广泛应用于日志监控、故障排查、业务分析等场景。本文档将详细介绍ELK的各个组件及其配置方法,帮助读者从零开始掌握ELK的使用。
|
1月前
|
存储 SQL 监控
|
1月前
|
运维 监控 安全
|
1月前
|
存储 监控 安全
|
1月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
41 5
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
208 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
3月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
4月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
|
4月前
|
JSON 自然语言处理 数据库
Elasticsearch从入门到项目部署 安装 分词器 索引库操作
这篇文章详细介绍了Elasticsearch的基本概念、倒排索引原理、安装部署、IK分词器的使用,以及如何在Elasticsearch中进行索引库的CRUD操作,旨在帮助读者从入门到项目部署全面掌握Elasticsearch的使用。