【信号去噪】基于麻雀算法优化VMD实现信号去噪附matlab代码

简介: 【信号去噪】基于麻雀算法优化VMD实现信号去噪附matlab代码

1 内容介绍

一种基于SSAVMD算法的信号去噪方法,具体为:根据麻雀优化算法数学模型,然后进行初始化参数,在取值范围内初始化麻雀的位置向量,根据位置向量对原始振动信号进行VMD分解,然后计算每个麻雀位置下的平均包络熵;更新最小平均包络熵,即获得当前群体中最佳个体的位置更新当前麻雀个体的空间位置;输出最佳麻雀个体的位置向量,即得VMD的分解参数组合;根据所得到的分解参数组合对信号进行VMD分解,将分解出IMF分量相加得到重构信号,即得去噪后的信号.本发明解决了现有技术中存在的原始VMD算法的分解参数需要根据经验进行人工确定,导致无法得到最优分解结果,从而影响信号的去噪效果的问题.

2 部分代码

function [SampEn] = SampEn(series, dim, r)


   control = ~isempty(series);

   assert(control, 'The user must introduce a time series (first inpunt).');

   control = ~isempty(dim);

   assert(control, 'The user must introduce a embbeding dimension (second inpunt).');

   control = ~isempty(r);

   assert(control, 'The user must introduce a tolerand: r (third inpunt).');


   series = (series - mean(series)) / std(series);

   N = length(series);

   result = zeros(1, 2);


   for j = 1:2

       m = dim + j - 1;


       patterns = NaN(m, N - m + 1);

       count = NaN(1, N - m);


       if m == 1

           patterns = series;

       else


           for i = 1:m

               patterns(i, :) = series(i:N - m + i);

           end


       end


       for i = 1:N - m


           if m == 1

               temp = abs(patterns - repmat(patterns(:, i), 1, N - m + 1));

           else

               temp = max(abs(patterns - repmat(patterns(:, i), 1, N - m + 1)));

           end


           bool = (temp <= r);


           count(i) = (sum(bool) - 1);

       end


       count = count / (N - m - 1);


       result(j) = mean(count);

   end


   SampEn = log(result(1) / result(2));


end

3 运行结果

4 参考文献


博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。



目录
打赏
0
0
0
0
845
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
96 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
306 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。

热门文章

最新文章