数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—NumPy—Numpy 高级—通用函数(2)(十)

简介: 你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,

2.3.4 集合运算函数

A = np.array([6, 8, 9, 1, 4])
B = np.array([3, 6, 5, 7, 1]) 
# 计算交集
display(np.intersect1d(A, B))
# 计算并集
display(np.union1d(A, B))
# 计算差集
display(np.setdiff1d(A, B))

image.png

2.3.5 数学和统计函数

🚩我们挑几个常用的函数进行代码演示,剩余的函数有兴趣的读者可以自行查阅用法自己演示。min、max、mean、median、sum、std、var、cumsum、cumprod、argmin、argmax、argwhere、cov、corrcoef

import numpy as np 
arr1 = np.array([5, 90, 87, 35, 23,  6, 39, 39, 99, 79, 72, 94, 97, 13, 84]) 
# 计算数组中的最小值
display(arr1.min())
# 计算数组中的最大值的索引
display(arr1.argmax())
# 返回大于40的元素的索引
display(np.argwhere(arr1 > 40))
# 计算数组的累加和
display(np.cumsum(arr1))
arr2 = np.random.randint(0, 10,size = (4, 5))
display(arr2)
# 计算列的平均值
display(arr2.mean(axis = 0))
# 计算行的平均值
display(arr2.mean(axis = 1))
# 协方差矩阵
display(np.cov(arr2, rowvar = True))
# 相关性系数
display(np.corrcoef(arr2, rowvar = True))

27.png

2.4 矩阵运算

2.4.1 矩阵的乘法

#矩阵的乘积(点乘)
A = np.array([[2, 1, 7], 
              [6, 3, 4]]) # shape(2, 3) 
B = np.array([[4, 3], 
              [0, 9], 
              [-5, -8]]) # shape(3, 2) 
# 第一种方法 
display(np.dot(A,B))
# 第二种方法
display(A @ B) # 符号 @ 表示矩阵乘积运算
# 第三种方法
display(A.dot(B))

2.4.2 矩阵的其他运算

np.set_printoptions(suppress = True) # 不使用科学计数法
from numpy.linalg import inv,det,eig,qr,svd 
A = np.array([[1, 2, 3], 
              [2, 3, 1], 
              [3, 2, 1]]) # shape(3, 3) 
# 求逆矩阵
B = inv(A)  # B 就是 A 的逆矩阵
display(B)
display(A.dot(B))
# 求矩阵的行列式
display(det(A))

image.png

目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
72 2
|
4月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
39 0
|
4月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
69 0
|
4月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
133 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
4月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
67 1
|
5月前
|
算法 索引 Python
Numpy 的一些以 arg 开头的函数
Numpy 的一些以 arg 开头的函数
81 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
3月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
47 2
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
83 5