《人脸识别原理及算法——动态人脸识别系统研究》—1章1.4节人脸图像识别主要研究的问题

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介:

本节书摘来自异步社区《人脸识别原理及算法——动态人脸识别系统研究》一书中的1章1.4节人脸图像识别主要研究的问题,作者 沈理 , 刘翼光 , 熊志勇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.4 人脸图像识别主要研究的问题
人脸识别原理及算法——动态人脸识别系统研究
从人脸图像识别的过程来看,建立人脸模型是一个比较重要的环节,而在这个环节中提取合适的特征采样值又是比较关键的。不同的识别方法所提取的特征值是不一样的,提取方法也是不一样的。但模型特征的最终表现形式都是类似的,以向量的形式表示。

人脸图像识别的难度从其图像样本的易受干扰程度也可体现出来,不同的光照、是否有背景以及图像是否倾斜、是否有旋转等都会对图像的样本产生干扰,从而对图像识别结果造成影响。

1.4.1 数据采样
因为人脸是三维目标物体,很难用简单的模型来加以描述,所以一般将其投影到二维空间,得到二维的人脸图像,并用于识别。而对于同一个物体,从不同角度得到的投影图像各不相同,有的甚至相差较大,因此识别时,可能将来源于同一个目标物体的不同投影图像识别为不相同。

定义1.1: 设训练样本集合为R,取任一目标S_i ,对S_i进行某些操作Gamma ,由此得到的模式集合为L_i = left{ {o_{i1} ,o_{i2} , cdots ,o_{in} } right} ,则对应R,可得到样本库为K = left{ {o_{11} , cdots ,o_{1n} ,o_{21} , cdots ,o_{2n} , cdots ,o_{i1} , cdots ,o_{in} , cdots ,} right};对于某一待识目标M,若M与K中任一元素o_{ij} 相等或最近似,则认为M = L_i,也即M = S_i;否则,拒识。

在上述定义中,如果L_i 为单元素集合(n=1),即每个训练样本在库中有一个数据,则称之为单样本数据识别;否则,称为多样本数据识别。

对于某个待识别目标,其在库中对应的样本个数越多,则被识别出的可能性越大;反之,则越小。因此,在识别精确度要求高的场合,应该采用多样本数据,并设计相应的识别算法进行识别;但样本数据增加了,对存储空间的要求也就相应增加。另外在某些场合,有时对于每个训练目标只能提供一个样本数据,则这时应该考虑在单样本数据的情况下,如何设计一个较通用的识别算法。

一般进行人脸图像识别的过程是这样的:首先要建立一个训练样本库,对于每个训练样本在库中都有一幅或多幅人脸图像数据,识别时,得到待识目标的相应数据,与库中各样本数据进行比较,如能够得到合适的匹配,则认为识别出;否则,拒识,并将待识目标的相应数据加入样本库中。为了得到一个通用的人脸图像识别系统,一般都基于单样本数据情况。

1.4.2 干扰因素
除了样本数据不足会给识别带来一定的困难外,一些外在的干扰也会影响识别的精度。

(1)图像质量

对于拍摄清晰的人脸图像,可从中准确地分辨出人脸各部分的结构信息及纹理信息,有利于人脸图像特征的提取以及提高识别率;反之,如图像质量较差,将会给识别带来一定的困难,有时需要先进行图像的增强处理以及平滑处理。

(2)背景

人类能够在各种环境下识别某些特定的目标,可以认为人类具有将目标从背景中提取出来进行识别的能力,而不是只能在某一特定环境下识别目标。但背景却会对机器识别产生不利影响,因为要从一幅图像中分辨出背景与目标本身也是一个识别任务。如果背景较简单,则目标提取相对容易些;否则,很可能提取不出目标,使得后续的识别很难进行。对于一幅人脸图像而言,背景的存在是必然的,因此必须考虑背景的影响。

(3)光照

光照对于视觉的影响是很大的,即使对于人类,也会由于光线太暗而出现误识。反映到人脸图像的识别上,光照可以影响目标图像的结构,使得目标的轮廓、纹理都会出现偏差;对于同一个人,在不同光照下得到的人脸图像也会不同。因此,对于一个通用性较强的人脸图像识别系统,光照是一个要考虑的因素。

(4)目标的旋转

在进行拍摄时,人的头部会不自主地做些转动,一般可归结为两类旋转,一类为深度旋转,另一类为平面旋转(也可称为平面倾斜)。这两类旋转,尤其是前者,给人脸图像的识别带来很大难度。

(5)尺度

对于人类而言,当一个目标在远处出现时,因其较小,可能识别不出,随着目标的靠近,目标逐渐放大,变得清晰,人类能够准确地将其识别出来;另一方面,如果眼睛距离目标太近,目标过于放大,也可能识别不出。同样,对于人脸图像的识别而言,图像中目标的尺度也必须在一定的范围内,目标太小或太大都将给识别带来困难。

(6)人脸的表情

指纹成像时不会因为带有表情而给识别带来困难,而人脸是具有表情的,并且每次成像时,表情都不会完全一样,反映到人脸图像上,对于同一个人,其表情不同,得到的人脸图像也就不同。

(7)其他

其他因素如头饰、眼镜、胡须、化妆等都会给识别带来困难。

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

相关文章
|
20天前
|
消息中间件 存储 缓存
zk基础—1.一致性原理和算法
本文详细介绍了分布式系统的特点、理论及一致性算法。首先分析了分布式系统的五大特点:分布性、对等性、并发性、缺乏全局时钟和故障随时发生。接着探讨了分布式系统理论,包括CAP理论(一致性、可用性、分区容错性)和BASE理论(基本可用、软状态、最终一致性)。文中还深入讲解了两阶段提交(2PC)与三阶段提交(3PC)协议,以及Paxos算法的推导过程和核心思想,强调了其在ZooKeeper中的应用。最后简述了ZAB算法,指出其通过改编的两阶段提交协议确保节点间数据一致性,并在Leader故障时快速恢复服务。这些内容为理解分布式系统的设计与实现提供了全面的基础。
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
399 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
存储 监控 算法
基于 C# 的局域网计算机监控系统文件变更实时监测算法设计与实现研究
本文介绍了一种基于C#语言的局域网文件变更监控算法,通过事件驱动与批处理机制结合,实现高效、低负载的文件系统实时监控。核心内容涵盖监控机制选择(如事件触发机制)、数据结构设计(如监控文件列表、事件队列)及批处理优化策略。文章详细解析了C#实现的核心代码,并提出性能优化与可靠性保障措施,包括批量处理、事件过滤和异步处理等技术。最后,探讨了该算法在企业数据安全监控、文件同步备份等场景的应用潜力,以及未来向智能化扩展的方向,如文件内容分析、智能告警机制和分布式监控架构。
59 3
|
2月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
1月前
|
算法 5G 定位技术
高低频混合组网系统中基于地理位置信息的信道测量算法matlab仿真
本内容展示了一种基于地理位置信息的信道测量算法,适用于现代蜂窝系统,尤其在毫米波通信中,波束对准成为关键步骤。算法通过信号传播模型和地理信息实现信道状态测量,并优化误差提升准确性。完整程序基于Matlab2022a运行,无水印效果,核心代码配有中文注释及操作视频,适合深入学习与应用开发。
|
1月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
40 0
|
4月前
|
机器学习/深度学习 数据采集 算法
短视频到底如何推荐的?深度剖析视频算法推送原理详细且专业的解读-优雅草卓伊凡-【01】短视频算法推荐之数据收集
短视频到底如何推荐的?深度剖析视频算法推送原理详细且专业的解读-优雅草卓伊凡-【01】短视频算法推荐之数据收集
279 12
短视频到底如何推荐的?深度剖析视频算法推送原理详细且专业的解读-优雅草卓伊凡-【01】短视频算法推荐之数据收集
|
4月前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
4月前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
105 14
|
5月前
|
算法 安全 Go
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了
本文探讨了如何利用 Go 语言中的 Bloom Filter 算法提升公司局域网管理系统的性能。Bloom Filter 是一种高效的空间节省型数据结构,适用于快速判断元素是否存在于集合中。文中通过具体代码示例展示了如何在 Go 中实现 Bloom Filter,并应用于局域网的 IP 访问控制,显著提高系统响应速度和安全性。随着网络规模扩大和技术进步,持续优化算法和结合其他安全技术将是企业维持网络竞争力的关键。
106 2
公司局域网管理系统里的 Go 语言 Bloom Filter 算法,太值得深挖了

热门文章

最新文章