“12306” 是如何支撑百万 QPS 的?(一)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
传统型负载均衡 CLB,每月750个小时 15LCU
简介: “12306” 是如何支撑百万 QPS 的?(一)
  • 12306抢票,极限并发带来的思考?
  • 1. 大型高并发系统架构
  • 1.1 负载均衡简介
  • 1.2 Nginx加权轮询的演示
  • 2.秒杀抢购系统选型
  • 2.1 下单减库存
  • 2.2 支付减库存
  • 2.3 预扣库存
  • 3. 扣库存的艺术

12306抢票,极限并发带来的思考?

每到节假日期间,一二线城市返乡、外出游玩的人们几乎都面临着一个问题:抢火车票!虽然现在大多数情况下都能订到票,但是放票瞬间即无票的场景,相信大家都深有体会。尤其是春节期间,大家不仅使用12306,还会考虑“智行”和其他的抢票软件,全国上下几亿人在这段时间都在抢票。“12306服务”承受着这个世界上任何秒杀系统都无法超越的QPS,上百万的并发再正常不过了!笔者专门研究了一下“12306”的服务端架构,学习到了其系统设计上很多亮点,在这里和大家分享一下并模拟一个例子:如何在100万人同时抢1万张火车票时,系统提供正常、稳定的服务。github代码地址

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。

项目地址:https://github.com/YunaiV/ruoyi-vue-pro

1. 大型高并发系统架构

高并发的系统架构都会采用分布式集群部署,服务上层有着层层负载均衡,并提供各种容灾手段(双火机房、节点容错、服务器灾备等)保证系统的高可用,流量也会根据不同的负载能力和配置策略均衡到不同的服务器上。下边是一个简单的示意图:

image.png

1.1 负载均衡简介

上图中描述了用户请求到服务器经历了三层的负载均衡,下边分别简单介绍一下这三种负载均衡:

  • OSPF(开放式最短链路优先)是一个内部网关协议(Interior Gateway Protocol,简称IGP)。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,OSPF会自动计算路由接口上的Cost值,但也可以通过手工指定该接口的Cost值,手工指定的优先于自动计算的值。OSPF计算的Cost,同样是和接口带宽成反比,带宽越高,Cost值越小。到达目标相同Cost值的路径,可以执行负载均衡,最多6条链路同时执行负载均衡。
  • LVS (Linux VirtualServer),它是一种集群(Cluster)技术,采用IP负载均衡技术和基于内容请求分发技术。调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器。
  • Nginx想必大家都很熟悉了,是一款非常高性能的http代理/反向代理服务器,服务开发中也经常使用它来做负载均衡。Nginx实现负载均衡的方式主要有三种:轮询、加权轮询、ip hash轮询,下面我们就针对Nginx的加权轮询做专门的配置和测试

1.2 Nginx加权轮询的演示

Nginx实现负载均衡通过upstream模块实现,其中加权轮询的配置是可以给相关的服务加上一个权重值,配置的时候可能根据服务器的性能、负载能力设置相应的负载。下面是一个加权轮询负载的配置,我将在本地的监听3001-3004端口,分别配置1,2,3,4的权重:

#配置负载均衡
    upstream load_rule {
       server 127.0.0.1:3001 weight=1;
       server 127.0.0.1:3002 weight=2;
       server 127.0.0.1:3003 weight=3;
       server 127.0.0.1:3004 weight=4;
    }
    ...
    server {
    listen       80;
    server_name  load_balance.com www.load_balance.com;
    location / {
       proxy_pass http://load_rule;
    }
}

我在本地/etc/hosts目录下配置了 www.load_balance.com的虚拟域名地址,接下来使用Go语言开启四个http端口监听服务,下面是监听在3001端口的Go程序,其他几个只需要修改端口即可:

package main
import (
 "net/http"
 "os"
 "strings"
)
func main() {
 http.HandleFunc("/buy/ticket", handleReq)
 http.ListenAndServe(":3001", nil)
}
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
 failedMsg :=  "handle in port:"
 writeLog(failedMsg, "./stat.log")
}
//写入日志
func writeLog(msg string, logPath string) {
 fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
 defer fd.Close()
 content := strings.Join([]string{msg, "\r\n"}, "3001")
 buf := []byte(content)
 fd.Write(buf)
}

我将请求的端口日志信息写到了./stat.log文件当中,然后使用ab压测工具做压测:

ab -n 1000 -c 100 http://www.load_balance.com/buy/ticket

统计日志中的结果,3001-3004端口分别得到了100、200、300、400的请求量,这和我在nginx中配置的权重占比很好的吻合在了一起,并且负载后的流量非常的均匀、随机。具体的实现大家可以参考nginx的upsteam模块实现源码,这里推荐一篇文章:Nginx 中 upstream 机制的负载均衡

基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。

项目地址:https://github.com/YunaiV/onemall

2.秒杀抢购系统选型

回到我们最初提到的问题中来:火车票秒杀系统如何在高并发情况下提供正常、稳定的服务呢?

从上面的介绍我们知道用户秒杀流量通过层层的负载均衡,均匀到了不同的服务器上,即使如此,集群中的单机所承受的QPS也是非常高的。如何将单机性能优化到极致呢?要解决这个问题,我们就要想明白一件事:通常订票系统要处理生成订单、减扣库存、用户支付这三个基本的阶段,我们系统要做的事情是要保证火车票订单不超卖、不少卖 ,每张售卖的车票都必须支付才有效,还要保证系统承受极高的并发。这三个阶段的先后顺序改怎么分配才更加合理呢?我们来分析一下:

2.1 下单减库存

当用户并发请求到达服务端时,首先创建订单,然后扣除库存,等待用户支付。这种顺序是我们一般人首先会想到的解决方案,这种情况下也能保证订单不会超卖,因为创建订单之后就会减库存,这是一个原子操作。但是这样也会产生一些问题,第一就是在极限并发情况下,任何一个内存操作的细节都至关影响性能,尤其像创建订单这种逻辑,一般都需要存储到磁盘数据库的,对数据库的压力是可想而知的;第二是如果用户存在恶意下单的情况,只下单不支付这样库存就会变少,会少卖很多订单,虽然服务端可以限制IP和用户的购买订单数量,这也不算是一个好方法。

image.png

2.2 支付减库存

如果等待用户支付了订单在减库存,第一感觉就是不会少卖。但是这是并发架构的大忌,因为在极限并发情况下,用户可能会创建很多订单,当库存减为零的时候很多用户发现抢到的订单支付不了了,这也就是所谓的“超卖”。也不能避免并发操作数据库磁盘IO

image.png

2.3 预扣库存

从上边两种方案的考虑,我们可以得出结论:只要创建订单,就要频繁操作数据库IO。那么有没有一种不需要直接操作数据库IO的方案呢,这就是预扣库存。先扣除了库存,保证不超卖,然后异步生成用户订单,这样响应给用户的速度就会快很多;那么怎么保证不少卖呢?用户拿到了订单,不支付怎么办?我们都知道现在订单都有有效期,比如说用户五分钟内不支付,订单就失效了,订单一旦失效,就会加入新的库存,这也是现在很多网上零售企业保证商品不少卖采用的方案。订单的生成是异步的,一般都会放到MQ、kafka这样的即时消费队列中处理,订单量比较少的情况下,生成订单非常快,用户几乎不用排队。

image.png

3. 扣库存的艺术

从上面的分析可知,显然预扣库存的方案最合理。我们进一步分析扣库存的细节,这里还有很大的优化空间,库存存在哪里?怎样保证高并发下,正确的扣库存,还能快速的响应用户请求?

在单机低并发情况下,我们实现扣库存通常是这样的:

image.png

为了保证扣库存和生成订单的原子性,需要采用事务处理,然后取库存判断、减库存,最后提交事务,整个流程有很多IO,对数据库的操作又是阻塞的。这种方式根本不适合高并发的秒杀系统。

接下来我们对单机扣库存的方案做优化:本地扣库存 。我们把一定的库存量分配到本地机器,直接在内存中减库存,然后按照之前的逻辑异步创建订单。改进过之后的单机系统是这样的:

image.png

这样就避免了对数据库频繁的IO操作,只在内存中做运算,极大的提高了单机抗并发的能力。但是百万的用户请求量单机是无论如何也抗不住的,虽然nginx处理网络请求使用epoll模型,c10k的问题在业界早已得到了解决。但是linux系统下,一切资源皆文件,网络请求也是这样,大量的文件描述符会使操作系统瞬间失去响应。上面我们提到了nginx的加权均衡策略,我们不妨假设将100W的用户请求量平均均衡到100台服务器上,这样单机所承受的并发量就小了很多。然后我们每台机器本地库存100张火车票,100台服务器上的总库存还是1万,这样保证了库存订单不超卖,下面是我们描述的集群架构:

image.png

问题接踵而至,在高并发情况下,现在我们还无法保证系统的高可用,假如这100台服务器上有两三台机器因为扛不住并发的流量或者其他的原因宕机了。那么这些服务器上的订单就卖不出去了,这就造成了订单的少卖。要解决这个问题,我们需要对总订单量做统一的管理,这就是接下来的容错方案。服务器不仅要在本地减库存,另外要远程统一减库存 。有了远程统一减库存的操作,我们就可以根据机器负载情况,为每台机器分配一些多余的“buffer库存”用来防止机器中有机器宕机的情况。我们结合下面架构图具体分析一下:

image.png

我们采用Redis存储统一库存,因为Redis的性能非常高,号称单机QPS能抗10W的并发。在本地减库存以后,如果本地有订单,我们再去请求redis远程减库存,本地减库存和远程减库存都成功了,才返回给用户抢票成功的提示,这样也能有效的保证订单不会超卖。当机器中有机器宕机时,因为每个机器上有预留的buffer余票,所以宕机机器上的余票依然能够在其他机器上得到弥补,保证了不少卖。buffer余票设置多少合适呢,理论上buffer设置的越多,系统容忍宕机的机器数量就越多,但是buffer设置的太大也会对redis造成一定的影响。虽然redis内存数据库抗并发能力非常高,请求依然会走一次网络IO,其实抢票过程中对redis的请求次数是本地库存和buffer库存的总量,因为当本地库存不足时,系统直接返回用户“已售罄”的信息提示,就不会再走统一扣库存的逻辑,这在一定程度上也避免了巨大的网络请求量把redis压跨,所以buffer值设置多少,需要架构师对系统的负载能力做认真的考量。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
监控 Java 双11
Sentinel底层如何计算京东双十一线上系统实时QPS
【10月更文挑战第19天】随着电子商务行业的快速发展,双十一已成为全球最大的购物狂欢节。京东作为中国领先的电商平台,每年的双十一活动都会迎来巨大的流量高峰。为了保障系统在高并发情况下的稳定运行,京东采用了多种技术手段来应对。
48 0
|
5月前
|
运维 监控 Serverless
并发性能提升 4 倍!云帐房用 Serverless 轻松应对瞬时业务洪峰
通过函数计算FC,云帐房实现了性能提升,减少了用户等待时间,同时成本降低了约30%。此外,函数计算FC的多版本管理和灰度发布功能加速了开发迭代,实时监控与告警简化了运维工作。未来,云帐房计划扩展更多FC应用,聚焦业务创新。
7576 9
|
7月前
|
存储 消息中间件 Java
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现
在深入研究了 **“【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的API网关设计实现”** 设计实现后,我们意识到,尽管API网关为服务商提供了高效的数据获取手段,但实时数据的获取仍然是一个亟待解决的问题。
108 1
【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现
|
7月前
|
消息中间件 Java 程序员
阿里巴巴高并发架构到底多牛逼?是如何抗住淘宝双11亿级并发量?
众所周知,在Java的知识体系中,并发编程是非常重要的一环,也是面试的必问题,一个好的Java程序员是必须对并发编程这块有所了解的。
|
缓存 NoSQL 关系型数据库
性能第三讲:百万级QPS,支撑淘宝双11需要哪些技术
性能第三讲:百万级QPS,支撑淘宝双11需要哪些技术
1319 0
|
存储 SQL 关系型数据库
万级TPS亿级流水-中台账户系统架构设计
我们需要给所有前台业务提供统一的账户系统,用来支撑所有前台产品线的用户资产管理,统一提供支持大并发万级TPS、亿级流水、数据强一致、风控安全、日切对账、财务核算、审计等能力,在万级TPS下保证绝对的数据准确性和数据溯源能力。 >注:资金类系统只有合格和不合格,哪怕数据出现只有0.01分的差错也是不合格的,局部数据不准也就意味着全局数据都不可信。
1609 0
|
存储 缓存 数据库
百万QPS系统的缓存实践
标题有些吸引眼球了,但并不浮夸,甚至还会远远超过百万,现在的平均响应时间在1ms内,0.08ms左右 如此高的QPS,如此低的AVG,为什么会有如此效果,关键点可能就在多级缓存上 在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流
681 0
百万QPS系统的缓存实践
|
缓存 监控 NoSQL
百万级QPS,支撑淘宝双11需要哪些技术
又到一年双11,相信大部分同学都曾经有这个疑问:支撑起淘宝双11这么大的流量,需要用到哪些核心技术?性能优化系列的第二篇我想跟大家探讨一下这个话题。
1014 0
百万级QPS,支撑淘宝双11需要哪些技术
|
存储 负载均衡 NoSQL
“12306” 是如何支撑百万 QPS 的?(二)
“12306” 是如何支撑百万 QPS 的?(二)
|
存储 负载均衡 NoSQL
“12306” 是如何支撑百万 QPS 的?
上图中描述了用户请求到服务器经历了三层的负载均衡,下边分别简单介绍一下这三种负载均衡:
“12306” 是如何支撑百万 QPS 的?