100G内存下,MySQL查询200G大表会OOM么?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 我的主机内存只有100G,现在要全表扫描一个200G大表,会不会把DB主机的内存用光?逻辑备份时,可不就是做整库扫描吗?若这样就会把内存吃光,逻辑备份不是早就挂了?所以大表全表扫描,看起来应该没问题。这是为啥呢?
  • 全表扫描对server层的影响
  • 全表扫描对InnoDB的影响
  • InnoDB内存管理
  • 小结

image.png

我的主机内存只有100G,现在要全表扫描一个200G大表,会不会把DB主机的内存用光?

逻辑备份时,可不就是做整库扫描吗?若这样就会把内存吃光,逻辑备份不是早就挂了?

所以大表全表扫描,看起来应该没问题。这是为啥呢?

全表扫描对server层的影响

假设,我们现在要对一个200G的InnoDB表db1. t,执行一个全表扫描。当然,你要把扫描结果保存在客户端,会使用类似这样的命令:

mysql -h$host -P$port -u$user -p$pwd -e 
 "select * from db1.t" > $target_file

InnoDB数据保存在主键索引上,所以全表扫描实际上是直接扫描表t的主键索引。这条查询语句由于没有其他判断条件,所以查到的每一行都可以直接放到结果集,然后返回给客户端。

那么,这个“结果集”存在哪里呢?

服务端无需保存一个完整结果集。取数据和发数据的流程是这样的:

  • 获取一行,写到net_buffer 。这块内存的大小是由参数net_buffer_length 定义,默认16k
  • 重复获取行,直到net_buffer 写满,调用网络接口发出去
  • 若发送成功,就清空net_buffer ,然后继续取下一行,并写入net_buffer
  • 若发送函数返回EAGAINWSAEWOULDBLOCK ,就表示本地网络栈(socket send buffer)写满了,进入等待。直到网络栈重新可写,再继续发送

查询结果发送流程:

image.png

可见:

  • 一个查询在发送过程中,占用的MySQL内部的内存最大就是net_buffer_length 这么大,不会达到200G
  • socket send buffer 也不可能达到200G(默认定义/proc/sys/net/core/wmem_default),若socket send buffer被写满,就会暂停读数据的流程

所以MySQL其实是“边读边发”。这意味着,若客户端接收得慢,会导致MySQL服务端由于结果发不出去,这个事务的执行时间变长。

比如下面这个状态,就是当客户端不读socket receive buffer 内容时,在服务端show processlist看到的结果。

服务端发送阻塞:

image.png

若看到State一直是“Sending to client”,说明服务器端的网络栈写满了。

若客户端使用–quick参数,会使用mysql_use_result方法:读一行处理一行。假设某业务的逻辑较复杂,每读一行数据以后要处理的逻辑若很慢,就会导致客户端要过很久才取下一行数据,可能就会出现上图结果。

因此,对于正常的线上业务来说,若一个查询的返回结果不多,推荐使用mysql_store_result 接口,直接把查询结果保存到本地内存。

当然前提是查询返回结果不多。如果太多,因为执行了一个大查询导致客户端占用内存近20G,这种情况下就需要改用mysql_use_result 接口。

若你在自己负责维护的MySQL里看到很多个线程都处于“Sending to client”,表明你要让业务开发同学优化查询结果,并评估这么多的返回结果是否合理。

若要快速减少处于这个状态的线程的话,可以将net_buffer_length 设置更大。

有时,实例上看到很多查询语句状态是“Sending data”,但查看网络也没什么问题,为什么Sending data要这么久?

一个查询语句的状态变化是这样的:

  • MySQL查询语句进入执行阶段后,先把状态设置成 Sending data
  • 然后,发送执行结果的列相关的信息(meta data) 给客户端
  • 再继续执行语句的流程
  • 执行完成后,把状态设置成空字符串

即“Sending data”并不一定是指“正在发送数据”,而可能是处于执行器过程中的任意阶段。比如,你可以构造一个锁等待场景,就能看到Sending data状态。

读全表被锁:

session  1 session2
begin  select * from t where id=1 for update 启动事务

select * from t lock in share mode  (blocked)

Sending data状态

image.png

可见session2是在等锁,状态显示为Sending data。

  • 仅当一个线程处于“等待客户端接收结果”的状态,才会显示"Sending to client"
  • 若显示成“Sending data”,它的意思只是“正在执行”

所以,查询的结果是分段发给客户端,因此扫描全表,查询返回大量数据,并不会把内存打爆。

以上是server层的处理逻辑,在InnoDB引擎里又是怎么处理?

推荐下自己做的 Spring Boot 的实战项目:

https://github.com/YunaiV/ruoyi-vue-pro

全表扫描对InnoDB的影响

InnoDB内存的一个作用,是保存更新的结果,再配合redo log,避免随机写盘。

内存的数据页是在Buffer Pool (简称为BP)管理,在WAL里BP起加速更新的作用。

BP还能加速查询。

由于WAL,当事务提交时,磁盘上的数据页是旧的,若这时马上有个查询来读该数据页,是不是要马上把redo log应用到数据页?

不需要。因为此时,内存数据页的结果是最新的,直接读内存页即可。这时查询无需读磁盘,直接从内存取结果,速度很快。所以,Buffer Pool能加速查询。

而BP对查询的加速效果,依赖于一个重要的指标,即:内存命中率。

可以在show engine innodb status结果中,查看一个系统当前的BP命中率。一般情况下,一个稳定服务的线上系统,要保证响应时间符合要求的话,内存命中率要在99%以上。

执行show engine innodb status ,可以看到“Buffer pool hit rate”字样,显示的就是当前的命中率。比如下图命中率,就是100%。

image.png

若所有查询需要的数据页都能够直接从内存得到,那是最好的,对应命中率100%。

InnoDB Buffer Pool的大小是由参数 innodb_buffer_pool_size 确定,一般建议设置成可用物理内存的60%~80%。

在大约十年前,单机的数据量是上百个G,而物理内存是几个G;现在虽然很多服务器都能有128G甚至更高的内存,但是单机的数据量却达到了T级别。

所以,innodb_buffer_pool_size 小于磁盘数据量很常见。若一个 Buffer Pool满了,而又要从磁盘读入一个数据页,那肯定是要淘汰一个旧数据页的。

推荐下自己做的 Spring Cloud 的实战项目:

https://github.com/YunaiV/onemall

InnoDB内存管理

使用的最近最少使用 (Least Recently Used, LRU)算法,淘汰最久未使用数据。

基本LRU算法

InnoDB管理BP的LRU算法,是用链表实现的:

  • state1,链表头部是P1,表示P1是最近刚被访问过的数据页
  • 此时,一个读请求访问P3,因此变成状态2,P3被移到最前
  • 状态3表示,这次访问的数据页不存在于链表,所以需要在BP中新申请一个数据页Px,加到链表头。但由于内存已满,不能申请新内存。于是清空链表末尾Pm数据页内存,存入Px的内容,放到链表头部

最终就是最久没有被访问的数据页Pm被淘汰。

若此时要做一个全表扫描,会咋样?若要扫描一个200G的表,而这个表是一个历史数据表,平时没有业务访问它。

那么,按此算法扫描,就会把当前BP里的数据全部淘汰,存入扫描过程中访问到的数据页的内容。也就是说BP里主要放的是这个历史数据表的数据。

对于一个正在做业务服务的库,这可不行呀。你会看到,BP内存命中率急剧下降,磁盘压力增加,SQL语句响应变慢。

所以,InnoDB不能直接使用原始的LRU。InnoDB对其进行了优化。

改进的LRU算法

5.png

InnoDB按5:3比例把链表分成New区和Old区。图中LRU_old指向的就是old区域的第一个位置,是整个链表的5/8处。即靠近链表头部的5/8是New区域,靠近链表尾部的3/8是old区域。

改进后的LRU算法执行流程:

  • 状态1,要访问P3,由于P3在New区,和优化前LRU一样,将其移到链表头部 =》状态2
  • 之后要访问一个新的不存在于当前链表的数据页,这时依然是淘汰掉数据页Pm,但新插入的数据页Px,是放在LRU_old处
  • 处于old区的数据页,每次被访问的时候都要做如下判断:
  • 若该数据页在LRU链表中存在的时间超过1s,就把它移动到链表头部
  • 若该数据页在LRU链表中存在的时间短于1s,位置保持不变。1s是由参数innodb_old_blocks_time控制,默认值1000,单位ms。

该策略,就是为了处理类似全表扫描的操作量身定制。还是扫描200G历史数据表:

  • 扫描过程中,需要新插入的数据页,都被放到old区域
  • 一个数据页里面有多条记录,这个数据页会被多次访问到,但由于是顺序扫描,这个数据页第一次被访问和最后一次被访问的时间间隔不会超过1秒,因此还是会被保留在old区域
  • 再继续扫描后续的数据,之前的这个数据页之后也不会再被访问到,于是始终没有机会移到链表头部(New区),很快就会被淘汰出去。

可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了BP,但对young区完全没有影响,从而保证了Buffer Pool响应正常业务的查询命中率。

小结

MySQL采用的是边算边发的逻辑,因此对于数据量很大的查询结果来说,不会在server端保存完整的结果集。所以,如果客户端读结果不及时,会堵住MySQL的查询过程,但是不会把内存打爆。

而对于InnoDB引擎内部,由于有淘汰策略,大查询也不会导致内存暴涨。并且,由于InnoDB对LRU算法做了改进,冷数据的全表扫描,对Buffer Pool的影响也能做到可控。

全表扫描还是比较耗费IO资源的,所以业务高峰期还是不能直接在线上主库执行全表扫描的。


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
关系型数据库 MySQL 索引
MySQL的全文索引查询方法
【8月更文挑战第26天】MySQL的全文索引查询方法
39 0
|
2月前
|
自然语言处理 关系型数据库 MySQL
MySQL MATCH 匹配中文 无法查询的问题如何处理?
【8月更文挑战第27天】MySQL MATCH 匹配中文 无法查询的问题如何处理?
141 62
|
22天前
|
SQL 缓存 关系型数据库
MySQL高级篇——关联查询和子查询优化
左外连接:优先右表创建索引,连接字段类型要一致、内连接:驱动表由数据量和索引决定、 join语句原理、子查询优化:拆开查询或优化成连接查询
MySQL高级篇——关联查询和子查询优化
|
24天前
|
SQL 关系型数据库 MySQL
MySQL查询(万字超详细版)
本文详细介绍了数据库中的单表和多表查询方法。首先,单表查询包括全列查询、指定列查询及去重查询,其中应避免使用`*`以提高效率。接着,文章讲解了排序查询,包括升序和降序,并展示了如何通过多个字段进行排序。在多表查询部分,本文解释了内连接、外连接(左外连接和右外连接)以及自连接的概念和用法,提供了丰富的代码示例
25 1
MySQL查询(万字超详细版)
|
6天前
|
存储 关系型数据库 MySQL
MySQL索引失效及避免策略:优化查询性能的关键
MySQL索引失效及避免策略:优化查询性能的关键
30 3
|
8天前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
58 5
|
8天前
|
关系型数据库 MySQL 数据库
MySQL 表的CRUD与复合查询
【9月更文挑战第26天】本文介绍了数据库操作中的 CRUD(创建、读取、更新、删除)基本操作及复合查询。创建操作使用 `INSERT INTO` 语句插入数据,支持单条和批量插入;读取操作使用 `SELECT` 语句查询数据,可进行基本查询、条件查询和排序查询;更新操作使用 `UPDATE` 语句修改数据;删除操作使用 `DELETE FROM` 语句删除数据。此外,还介绍了复合查询,包括连接查询(如内连接、左连接)和子查询,以及聚合函数与分组查询,并提供了示例代码。
|
11天前
|
关系型数据库 MySQL 数据库
Python MySQL查询返回字典类型数据的方法
通过使用 `mysql-connector-python`库并选择 `MySQLCursorDict`作为游标类型,您可以轻松地将MySQL查询结果以字典类型返回。这种方式提高了代码的可读性,使得数据操作更加直观和方便。上述步骤和示例代码展示了如何实现这一功能,希望对您的项目开发有所帮助。
37 4
|
14天前
|
NoSQL 关系型数据库 MySQL
当Redis与MySQL数据一致性校验中Redis数据量小于MySQL时的全量查询处理方法
保持Redis和MySQL之间的数据一致性是一个需要细致规划和持续维护的过程。通过全量数据同步、建立增量更新机制,以及定期执行数据一致性校验,可以有效地管理和维护两者之间的数据一致性。此外,利用现代化的数据同步工具可以进一步提高效率和可靠性。
36 6
|
11天前
|
关系型数据库 MySQL
mysql查询速度慢怎么解决?
mysql查询速度慢怎么解决?
33 2
下一篇
无影云桌面