ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: ElasticStack:使用FileBeat、Logstash、Elasticsearch、Kibana收集清洗存储查看分析数据

借用ElasticStack的一张图,很好的阐述了LEK的在数据处理中的位置

2.png

一、环境:

版本均未5.2.0

https://www.elastic.co/cn/downloads/past-releases


1、filebeat:

https://www.elastic.co/cn/downloads/past-releases/filebeat-5-2-0

2、logstash

https://www.elastic.co/cn/downloads/past-releases/logstash-5-2-0

3、elasticsearch:

https://www.elastic.co/cn/downloads/past-releases/elasticsearch-5-2-0

4、kibana:

https://www.elastic.co/cn/downloads/past-releases/kibana-5-2-0

二、日志准备

使用python脚本定时生成模拟日志


generator_log.py

# -*- encoding:utf-8 -*-

import time
from chinesename import ChineseName

cn = ChineseName()

while True:
    now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    message = "{} {}\n".format(now, cn.getName())
    print(message)

    with open("demo.log", "a", encoding="utf-8") as f:
        f.write(message)

    # 每3秒生成一条日志     
    time.sleep(3)

日志示例(日期 姓名):

2019-06-13 18:01:31 容休

三、filebeat

1、配置

修改配置文件filebeat.yml

可以选择直接将数据传入Elasticsearch,也可以传入Logstash处理

filebeat.prospectors:

- input_type: log
paths:
# 配置需要收集的文件地址
- /var/log/*.log

#-------------------------- Elasticsearch output ------------------------------
# output.elasticsearch:
# hosts: ["localhost:9200"]

#----------------------------- Logstash output --------------------------------
output.logstash:
hosts: ["localhost:5044"]

2、启动:

./filebeat -e -c filebeat.yml -d "publish"

参考:开始使用Filebeat

3.png

四、logstash

1、匹配说明

(1)内置匹配

%{SYNTAX:SEMANTIC}

(2)ruby正则

(?<name>pattern)

关于Ruby的正则:

Ruby 正则表达式: https://www.runoob.com/ruby/ruby-regular-expressions.html

Ruby 正则匹配测试: https://rubular.com/


2、配置

新建一个文件夹存放自定义匹配模式

$ mkdir ./patterns
$ cat ./patterns/datetime.re
DATETIME \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}

es-pipeline.conf

input {
beats {
port => "5044"
}
}
filter {
grok {
patterns_dir => ["./patterns"]
match => {
"message" => "%{DATETIME:logdate} (?<text>(.*))"
}
remove_field => "message"
}
date {
match => ["logdate", "yyyy-MM-dd HH:mm:ss"]
}
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => [ "localhost:9200" ]
}
}

3、启动logstash

# 解析配置文件并报告任何错误
$ ./bin/logstash -f es-pipeline.conf --config.test_and_exit

# 启用自动配置加载
$ ./bin/logstash -f es-pipeline.conf --config.reload.automatic

4.png

五、kibana中查询结果

1、启动

$ elasticsearch
$ kibana

2、查询

GET /logstash-2019.06.13/_search
{
"sort": [
{
"@timestamp": {
"order": "desc"
}
}
]
}

# 查询结果
{
"_index": "logstash-2019.06.13",
"_type": "log",
"_id": "AWtQTwv8vaBpxF8s4wUp",
"_score": null,
"_source": {
"@timestamp": "2019-06-13T10:08:02.000Z",
"offset": 197738,
"logdate": "2019-06-13 18:08:02",
"@version": "1",
"beat": {
"hostname": "bogon",
"name": "bogon",
"version": "5.2.0"
},
"input_type": "log",
"host": "bogon",
"source": "/Users/qmp/Desktop/log/demo.log",
"text": "伯镟",
"type": "log",
"tags": [
"beats_input_codec_plain_applied"
]
},
"sort": [
1560420482000
]
}

图形化查看日志数量曲线图

5.png

参考

使用Logstash filter grok过滤日志文件

Logstash使用grok进行日志过滤

Logstash介绍


            </div>
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
8天前
|
存储 监控 安全
|
24天前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
29天前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
17 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
29天前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
97 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
1月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
54 1
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
2月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
3月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
|
3月前
|
消息中间件 监控 Kafka
Filebeat+Kafka+Logstash+Elasticsearch+Kibana 构建日志分析系统
【8月更文挑战第13天】Filebeat+Kafka+Logstash+Elasticsearch+Kibana 构建日志分析系统
192 3

热门文章

最新文章

下一篇
无影云桌面