Dijkstra(迪杰斯特拉算法)的实现(C,C++,Matlab)

简介: Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。二.算法描述💡算法思想设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增

Dijkstra

一.算法背景

Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

二.算法描述

💡算法思想

设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),

第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增次序依次把第二组中的顶点加入S中。在加入的过程中,总保持从源点v到S中各个顶点的最短路径长度不大于从源点v到U中任何路径的长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前路径的最短长度。

算法步骤

a.初始时,只包括源点,即S = {v},v的距离为0。U包含除v以外的其他顶点,即:U ={其余顶点},若v与U中顶点u有边,则(u,v)为正常权值,若u不是v的出边邻接点,则(u,v)权值 ∞;

b…从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画

网络异常,图片无法展示
|

三:时间复杂度

设图的边数为 m,顶点数为 n。

Dijkstra 算法最简单的实现方法是用一个数组来存储所有顶点的dis[] 时间复杂度为O(n^2)

对于边数少于n^{2}的稀疏图来说,我们可以用邻接表来更有效的实现该算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来查找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为{\displaystyle O((m+n)logn)},斐波纳契堆能稍微提高一些性能,让算法运行时间达到{\displaystyle O(m+nlogn)}。然而,使用斐波纳契堆进行编程,常常会由于算法常数过大而导致速度没有显著提高。

四.算法缺点

算法限制要求:无负权值

无法求出任意两点路径(求任意两点 为 弗洛伊德算法(floyd))

五.算法实例

给出一个无向图

网络异常,图片无法展示
|

用Dijkstra算法找出以A为起点的单源最短路径步骤如下:

网络异常,图片无法展示
|

六.代码实现\

以下为 C,C++,Matlab 语言的代码作为示例

C语言 例题:sdut 3562 Proxy (迪杰斯特拉+反向建树)

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],bj[N];
int mp[N][N];int n;
void djsk(int v)
{
    int i,j,k,min;
    for(i=0;i<=n;i++)
    dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
     bj[v]=1;// 标记 已找到短路 
      for(i=0;i<=n;i++)// i 代表已经找到的最短路条数 
      {
        min=INF;k=0; 
        for(j=0;j<=n;j++)//从未找到最短路径元素中找一个路径最短的 
        if(!bj[j]&&dis[j]<min)min=dis[j],k=j;
        bj[k]=1;// 标记 已找到短路 
         for(j=0;j<=n+1;j++)//用但前最短路节点更新未找到最短路的节点 
         if(!bj[j]&&dis[j]>(dis[k]+mp[k][j]))dis[j]=dis[k]+mp[k][j];
      }
}

C语言_优化(队列) 例题: sdut 3562 Proxy迪杰斯特拉+反向建树

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],s[2][N];
int mp[N][N];int n;
void djsk(int v){
    int i,j,k,min,q=0,d=0,c=0;
    for(i=0;i<=n;i++)
  s[c][q++]=i,dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
      while(q)//没有未找到最短路的元素
      {
        min=INF;k=-1; 
        for(j=0;j<q;j++)//从未找到最短路径元素中找一个路径最短的 
        if(dis[s[c%2][j]]<min)
        { min=dis[s[c%2][j]];
        if(k!=-1)s[(c+1)%2][d++]=k;
           k=s[c%2][j];
        }
         else s[(c+1)%2][d++]=s[c%2][j];
         if(q==d)break;//寻找无改变 则未联通
         for(j=0;j<d;j++)//用但前最短路节点更新未找到最短路的节点 
         if(dis[s[(c+1)%2][j]]>(dis[k]+mp[k][s[(c+1)%2][j]]))dis[s[(c+1)%2][j]]=dis[k]+mp[k][s[(c+1)%2][j]];
         c=(c+1)%2;q=d;d=0;//交换层次
      }
}

C++语言

const int  INT = 32767;
const int MAX = 10;
int dis[MAX];
int path[MAX];
int A[MAX][MAX];
void Dijk(int v){
    bool S[MAX];                                  // 判断是否已存入该点到S集合中
      int n=MAX;
    for(int i=1; i<=n; ++i)
    {
        dis[i] = A[v][i];
        S[i] = false;                                // 初始化
          path[i] = v;
     }
     dis[v] = 0; S[v] = true;   
    for(int i=2; i<=n; i++){
         int mindist = INT;
         int u = v;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dis[j]<mindist)
            {
                  u = j;                             // u保存当前邻接点中距离最小的点的号码 
                  mindist = dis[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<INT)
             {
                 if(dis[u] + A[u][j] < dis[j])     //在通过新加入的u点路径找到离v点更短的路径  
                 {
                     dis[j] = dis[u] + A[u][j];    //更新dist 
                     path[j] = u;                    //记录前驱顶点 
                  }
              }
     }
}

Matlab 语言

%迪杰斯特拉(单源)
%     最短距离 ,路径    距离矩阵 起始点 结束点
 function [res,index] = Djsk(mp,stat,ends)
     n=size(mp,1);
     %初始化
     bj=zeros(n,1); %标记初始化
     dis=mp(stat,:); %各点最短路距离初始化   
     path=ones(n,1),path=path.*stat;%各点最短路路径初始化 
     dis(stat)=0;bj(stat)=1;
   for i=1:n 
     min=Inf; k=1;%局部初始化
      for j=1:n %从未找到最短路径点集合中找一个路径最短的点
       if (bj(j)~=1)&&(dis(j)<min),min=dis(j);k=j;end
      end
       bj(k)=1;%标记已找到的点的最短路径
       for j=1:n %用但前最短路节点更新未找到最短路的节点(同时更新各点路径的前一个点,即父节点) 
           if (bj(j)~=1)&&(dis(j)>(dis(k)+mp(k,j))), dis(j)=dis(k)+mp(k,j);path(j)=k;end
       end
  end
%对要求最短路径进行处理   
tem=ends;index(1)=ends;i=2;
while path(tem)~=stat
    index(i)=path(tem);
    tem=path(tem);
    i=i+1;
end
index(i)=stat;index=index(length(index):-1:1);res=dis(ends);
end
目录
相关文章
|
4月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
90 5
|
13天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
101 4
|
2月前
|
算法 机器人 定位技术
基于机器视觉和Dijkstra算法的平面建筑群地图路线规划matlab仿真
本程序基于机器视觉与Dijkstra算法,实现平面建筑群地图的路径规划。通过MATLAB 2022A读取地图图像,识别障碍物并进行路径搜索,支持鼠标选择起点与终点,最终显示最优路径及长度,适用于智能导航与机器人路径规划场景。
|
7月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
179 15
|
8月前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
12月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
627 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
6月前
|
运维 监控 算法
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
132 6
|
8月前
|
算法 编译器 C++
【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)
【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)
|
8天前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
|
8天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)

热门文章

最新文章