Python编程:configparser读写ini配置文件

简介: Python编程:configparser读写ini配置文件

用于对特定的配置进行操作,当前模块的名称在 python 3.x 版本中变更为 configparser。


1.读取配置文件

- read(filename) 直接读取ini文件内容

- sections() 得到所有的section,并以列表的形式返回

- options(section) 得到该section的所有option

- items(section) 得到该section的所有键值对

- get(section,option) 得到section中option的值,返回为string类型

- getint(section,option) 得到section中option的值,返回为int类型


2.写入配置文件

- add_section(section) 添加一个新的section

- set( section, option, value) 对section中的option进行设置

需要调用write将内容写入配置文件。


"""要读写的ini文件
[sec_a]
a_key1 = 20
a_key2 = 10
[sec_b]
b_key1 = 121
b_key2 = b_value2
b_key3 = $r
b_key4 = 127.0.0.1
"""
import configparser
#读取
cf=configparser.ConfigParser()
cf.read("data.ini")
print(cf)  
# <configparser.ConfigParser object at 0x00000000011F79E8>
secs=cf.sections()  # 获得所有区域
print("sections:",secs)
# sections: ['sec_a', 'sec_b']
opts=cf.options("sec_a")  # 获取区域的所有key
print(opts)
# ['a_key1', 'a_key2']
#打印出每个区域的所有属性
for sec in secs:
    print(cf.options(sec))
# ['a_key1', 'a_key2']
# ['b_key1', 'b_key2', 'b_key3', 'b_key4']
items = cf.items("sec_a")  # 获取键值对
print(items)
# [('a_key1', '20'), ('a_key2', '10')]
val=cf.get("sec_a","a_key1")
print(val)  # 20
print(type(val))  #--><class 'str'>
val=cf.getint("sec_a","a_key1")
print(val)  # 20
print(type(val))  #--><class 'int'>
#设置
cf.set("sec_b","b_key3","newvalue")
cf.add_section("newsection")
cf.set("newsection","new_key","new_value")
#写入
cf.write(open("data.txt","w"))
#判断
ret=cf.has_section("newsection") #判断存不存在
print(ret)  # True
cf.remove_section("newsection")#删除
ret=cf.has_section("newsection") #判断存不存在
print(ret)  # False
"""data.txt
[sec_a]
a_key1 = 20
a_key2 = 10
[sec_b]
b_key1 = 121
b_key2 = b_value2
b_key3 = newvalue
b_key4 = 127.0.0.1
[newsection]
new_key = new_value
"""

相关文章
|
10天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
10天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
10天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
9天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
|
9天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
11天前
|
机器学习/深度学习 分布式计算 API
Python 高级编程与实战:深入理解并发编程与分布式系统
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发、API 设计、网络编程和异步IO。本文将深入探讨 Python 在并发编程和分布式系统中的应用,并通过实战项目帮助你掌握这些技术。
|
9天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
|
9天前
|
消息中间件 分布式计算 并行计算
Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。
|
12天前
|
机器学习/深度学习 API Python
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
|
12天前
|
机器学习/深度学习 开发框架 API
Python 高级编程与实战:深入理解 Web 开发与 API 设计
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧以及数据科学和机器学习。本文将深入探讨 Python 在 Web 开发和 API 设计中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章