《贝叶斯思维:统计建模的Python学习法》——1.3 曲奇饼问题

简介:

本节书摘来异步社区《贝叶斯思维:统计建模的Python学习法》一书中的第1章,第1.3节,作者:【美】Allen B. Downey,更多章节内容可以访问云栖社区“异步社区”公众号查看

1.3 曲奇饼问题

我们即将开始讨论到贝叶斯定理,但我还想通过一个被称为“曲奇饼问题”的例子来介绍它。假设有两碗曲奇饼,碗1包含30个香草曲奇饼和10个巧克力曲奇饼,碗2有上述两种饼干各20个。

现在设想你在不看的情况下随机地挑一个碗拿一块饼,得到了一块香草曲奇饼。我们的问题是:从碗1取到香草曲奇饼的概率是多少?

这就是一个条件概率问题;我们希望得到概率p(碗1|香草),但怎样进行计算并非显而易见。问题如果换成在碗1中香草曲奇饼的概率则简单得多。

p(香草|碗1)= 3/4

不巧的是,p(A|B)并不和p(B|A)相同,但有方法从一个计算出另一个:贝叶斯定理。

相关文章
|
5月前
|
Python
掌握Python装饰器:轻松统计函数执行时间
掌握Python装饰器:轻松统计函数执行时间
335 76
|
10月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
878 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
11月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
614 15
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
2631 18
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
机器学习/深度学习 数据采集 算法
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
1120 7
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
299 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
数据建模 大数据 数据库
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
本文提供了2023年MCM问题Y的解题思路、建模方案、数据来源、相关资料以及Python代码,旨在建立数学模型解释二手帆船的挂牌价格,并分析地区对价格的影响,以及在香港(SAR)市场上的应用。
158 1
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
|
数据可视化 Serverless Python
Python小事例—质地不均匀的硬币的概率统计
Python小事例—质地不均匀的硬币的概率统计
240 0
|
开发者 Python
Python类和子类的小示例:建模农场
Python类和子类的小示例:建模农场
153 0

推荐镜像

更多