Python爬虫系列18-采集电视剧详情 比如:导演、年份、类型、短评等数据

简介: 身材不好就去锻炼,没钱就努力去赚,别把窘迫困境迁怒于别人,你唯一可以抱怨的就是不够努力的自己。向往别人看过的风景,但是到了周末,却抱着手机在家宅过一个又一个周末。所以当自己想到的一些东西就赶紧行动起来,羡慕别人不如行动自己。如果只是一味的去羡慕别人,从来都不去让自己行动起来,那么你永远都会在见证别人的成功,在见证别人的成长。

实战

image.png

代码源文件

import requests 
from lxml import etree
import pandas as pd


df = []
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4343.0 Safari/537.36',
           'Referer': 'https://movie.douban.com/top250'}
columns = ['排名','电影名称','导演','上映年份','制作国家','类型','评分','评价分数','短评']


def get_data(html):
    xp = etree.HTML(html)
    lis = xp.xpath('//*[@id="content"]/div/div[1]/ol/li')
    for li in lis:
        """排名、标题、导演、演员、"""
        ranks = li.xpath('div/div[1]/em/text()')
        titles = li.xpath('div/div[2]/div[1]/a/span[1]/text()')
        directors = li.xpath('div/div[2]/div[2]/p[1]/text()')[0].strip().replace("\xa0\xa0\xa0","\t").split("\t")
        infos = li.xpath('div/div[2]/div[2]/p[1]/text()')[1].strip().replace('\xa0','').split('/')
        dates,areas,genres = infos[0],infos[1],infos[2]
        ratings = li.xpath('.//div[@class="star"]/span[2]/text()')[0]
        scores = li.xpath('.//div[@class="star"]/span[4]/text()')[0][:-3]
        quotes = li.xpath('.//p[@class="quote"]/span/text()')
        for rank,title,director in zip(ranks,titles,directors):
            if len(quotes) == 0:
                quotes = None
            else:
                quotes = quotes[0]
            df.append([rank,title,director,dates,areas,genres,ratings,scores,quotes])
        d = pd.DataFrame(df,columns=columns)
        d.to_excel('Top250.xls',index=False)


for i in range(0,251,25):
    url = "https://movie.douban.com/top250?start={}&filter=".format(str(i))
    res = requests.get(url,headers=headers)
    html = res.text
    get_data(html)

image.png

如果学习上有遇到问题,加/:yiyi990805(备注:阿里云tony)即可。

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

相关文章
|
10天前
|
数据采集 JSON API
深入解析:使用 Python 爬虫获取淘宝店铺所有商品接口
本文介绍如何使用Python结合淘宝开放平台API获取指定店铺所有商品数据。首先需注册淘宝开放平台账号、创建应用并获取API密钥,申请接口权限。接着,通过构建请求、生成签名、调用接口(如`taobao.items.search`和`taobao.item.get`)及处理响应,实现数据抓取。代码示例展示了分页处理和错误处理方法,并强调了调用频率限制、数据安全等注意事项。此技能对开发者和数据分析师极具价值。
|
4天前
|
数据采集 XML JavaScript
Python爬虫:从人民网提取视频链接的完整指南
Python爬虫:从人民网提取视频链接的完整指南
|
10天前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
9天前
|
数据采集 Web App开发 API
B站高清视频爬取:Python爬虫技术详解
B站高清视频爬取:Python爬虫技术详解
|
13天前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
12天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
12天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
12天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
13天前
|
数据采集 搜索推荐 C语言
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
|
2天前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境

热门文章

最新文章