【信号去噪】基于硬阈值、软阈值、半软阈值、Maxmin阈值、Garrote阈值小波变换实现心音去噪附matlab代码

简介: 【信号去噪】基于硬阈值、软阈值、半软阈值、Maxmin阈值、Garrote阈值小波变换实现心音去噪附matlab代码

1 内容介绍

小波变换在信号的滤波降噪处理中应用非常广泛,针对传统小波阈值去噪算法中软,硬阈值函数以及Garrote阈值函数的不足,构造出一个新的阈值函数,并采用新的阈值确定方法,对信号的去噪处理更加灵活,克服了传统阈值函数的不足.通过Matlab软件,对传统阈值函数以及本文提出的改进阈值函数进行去噪处理仿真,在信噪比(SNR)和均方误差(MSE)两个方面进行定量对比.实验结果表明,使用改进的阈值函数进行去噪处理后,信号具有更高的信噪比和更小的均方误差,去噪效果优于传统方法.


2 仿真代码

clear all;

close all

[x,Fs]=audioread('d00.wav');

t=(0:length(x)-1)/Fs;   %计算样本时刻

noise=0.2*rand(length(x),1);

noise1 = wgn(length(x),1,-30);

x0=x;    %原始信号

x=x+noise1;

subplot(331); plot(t,x0); ylabel('幅度'); xlabel('时间(s)'); title('原始心音信号');

subplot(332); plot(t,x); ylabel('幅度'); xlabel('时间(s)'); title('含噪心音信号');

ylim([-1 1]);




[xd1,xd2,xd3,xd4,xd5,xd6]=softthersh(x,6,'db6');

subplot(333); plot(t,xd1); ylabel('幅度'); xlabel('时间(s)'); title('硬阈值心音信号');

subplot(334); plot(t,xd2); ylabel('幅度'); xlabel('时间(s)'); title('软阈值心音信号');

subplot(335); plot(t,xd3); ylabel('幅度'); xlabel('时间(s)'); title('半软阈值心音信号');

subplot(336); plot(t,xd4); ylabel('幅度'); xlabel('时间(s)'); title('Minimax阈值心音信号');

subplot(337); plot(t,xd5); ylabel('幅度'); xlabel('时间(s)'); title('Garrote阈值心音信号');

subplot(338); plot(t,xd6); ylabel('幅度'); xlabel('时间(s)'); title('改进阈值心音信号');

% subplot(339); plot(t,xd7); ylabel('幅度'); xlabel('时间(s)'); title('新改进阈值心音信号');


[SNR1,RMSE1]=Evaluate(x0,xd1);

[SNR2,RMSE2]=Evaluate(x0,xd2);

[SNR3,RMSE3]=Evaluate(x0,xd3);

[SNR4,RMSE4]=Evaluate(x0,xd4);

[SNR5,RMSE5]=Evaluate(x0,xd5);

[SNR6,RMSE6]=Evaluate(x0,xd6);

% [SNR7,RMSE7]=Evaluate(x0,xd7);


3 运行结果

4 参考文献

[1]袁孟宇. 基于改进小波阈值法的动液面信号去噪研究[D]. 东北石油大学.

[2]刘佳林, 孙旋. 基于改进阈值函数小波语音增强方法的研究[J]. 软件导刊, 2010(2):3.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


目录
打赏
0
0
0
0
842
分享
相关文章
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
7月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
300 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
177 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
208 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章