【笔记】最佳实践—混合负载HTAP的实践和优化

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 背景信息 本文主要提供数据库上云后OLTP+OLAP一体化架构的最佳实践,既HTAP。主要面对的业务应用范围: 混合型HTAP数据库需求:如ORACLE数据库改造上云,云上数据库方案选型; OLTP系统查询慢,存在分析型场景和瓶颈的客户; 读写分离需求。

PolarDB-X HTAP架构更多信息,请参见混合负载HTAP

HTAP集群

您购买的PolarDB-X主实例,主要面向在线通用业务场景。如果业务针对同一份数据有分析、专注离线拖数、跑批等场景,您可以在PolarDB-X主实例上购买多个只读实例116.png业务如果有在线HTAP混合流量或者读写分离的需求,推荐使用集群地址。PolarDB-X内部会基于智能路由或者读写权重将部分流量转发给只读实例;业务上只有离线数据分析需求时,推荐使用只读地址,只读地址会直接访问只读实例,只读地址的流量会采用MPP加速。关于连接地址信息,请参见集群地址和只读地址

路由

智能路由

PolarDB-X优化器会基于代价分析出查询物理扫描行数、CPU、内存、IO、网络等核心资源消耗量,将请求区分为TP与AP负载。当您在集群地址上开启了智能路由,会主动识别SQL的工作负载类型来做路由,比如将识别为AP负载的流量路由给只读实例。您可以通过explain cost指令查看SQL工作负载类型的识别情况。例如以下查询,该查询涉及到物理扫描行数rowcount很小,计算资源(CPU&Memory)也消耗比较少,所以这个查询被识别为TP负载。


mysql> explain cost  select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                                                                                                                           |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| TopN(sort="cnt ASC", offset=?2, fetch=?3): rowcount = 1.0, cumulative cost = value = 2.8765038E7, cpu = 37.0, memory = 64.0, io = 3.0, net = 5.75, id = 163602178                                                                                                                 |
|   Filter(condition="cnt > ?1"): rowcount = 1.0, cumulative cost = value = 2.8765026E7, cpu = 26.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602177                                                                                                                            |
|     HashAgg(group="k", cnt="COUNT()"): rowcount = 1.0, cumulative cost = value = 2.8765025E7, cpu = 25.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602171                                                                                                                     |
|       BKAJoin(condition="k = id", type="inner"): rowcount = 1.0, cumulative cost = value = 2.8765012E7, cpu = 12.0, memory = 18.0, io = 3.0, net = 5.75, id = 163602169                                                                                                           |
|         Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 2.3755003E7, cpu = 3.0, memory = 0.0, io = 1.0, net = 4.75, id = 163602164                                                                                                                             |
|           LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)"): rowcount = 1.0, cumulative cost = value = 2.3755002E7, cpu = 2.0, memory = 0.0, io = 1.0, net = 4.75, id = 163601451         |
|         Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 5003.0, cpu = 3.0, memory = 0.0, io = 1.0, net = 0.0, id = 163602167                                                                                                                                   |
|           LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))"): rowcount = 1.0, cumulative cost = value = 5002.0, cpu = 2.0, memory = 0.0, io = 1.0, net = 0.0, id = 163601377 |                                                                                                                                                                                                                                                                    |
| WorkloadType: TP                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

工作负载的识别,对于HTAP路由至关重要。这里也允许您通过HINT WORKLOAD_TYPE指定工作负载。同样以上述查询为例,可以将查询负载强制指定为AP。


mysql> explain cost /*+TDDL:WORKLOAD_TYPE=AP*/ select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                                                                                                                           |

+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| TopN(sort="cnt ASC", offset=?2, fetch=?3): rowcount = 1.0, cumulative cost = value = 2.8765038E7, cpu = 37.0, memory = 64.0, io = 3.0, net = 5.75, id = 163602178 |
| Filter(condition="cnt > ?1"): rowcount = 1.0, cumulative cost = value = 2.8765026E7, cpu = 26.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602177 |
| HashAgg(group="k", cnt="COUNT()"): rowcount = 1.0, cumulative cost = value = 2.8765025E7, cpu = 25.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602171 |
| BKAJoin(condition="k = id", type="inner"): rowcount = 1.0, cumulative cost = value = 2.8765012E7, cpu = 12.0, memory = 18.0, io = 3.0, net = 5.75, id = 163602169 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 2.3755003E7, cpu = 3.0, memory = 0.0, io = 1.0, net = 4.75, id = 163602164 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)"): rowcount = 1.0, cumulative cost = value = 2.3755002E7, cpu = 2.0, memory = 0.0, io = 1.0, net = 4.75, id = 163601451 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 5003.0, cpu = 3.0, memory = 0.0, io = 1.0, net = 0.0, id = 163602167 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))"): rowcount = 1.0, cumulative cost = value = 5002.0, cpu = 2.0, memory = 0.0, io = 1.0, net = 0.0, id = 163601377 | |
| WorkloadType: AP | |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

规则路由

除了基于代价的智能路由以外,我们也支持基于读写规则的路由。允许您在控制台参数管理上设置读写分离权重参数MASTER_READ_WEIGHT,默认值为100,可配置值区间[0, 100]。如果配置为Weight=60,意味着占60%的流量会继续在主实例执行,40%的剩余流量会路由到只读实例执行,如果只读实例有多个会进行自动分配。

智能路由和规则路由这两者关系是解耦的,具体关系请查看下表格。

智能路由规则 规则路由 (MASTER_READ_WEIGHT) 路由结果
开启 以代价的读写分离为主规则路由建议保持默认值为100
  • 事务和写操作流量,全部路由给主实例;
  • 识别为AP的查询流量,全部路由给只读实例;
  • 识别为TP的查询流量,按照(100-MASTER_READ_WEIGHT)路由给只读实例。
关闭 以规则的读写分离为主规则路由的可选范围:[0-100]
  • 事务和写操作流量,全部路由给主实例;
  • 识别为TP/AP的查询流量,一律按照(100-MASTER_READ_WEIGHT)路由给只读实例。

执行模式

目前PolarDB-X支持了三种执行模式:

  • 单机单线程(TP_LOCAL):查询过程中,是单线程计算,TP负载的查询涉及到的扫描行数比较少,往往会采样这种执行模式,比如基于主键的点查。
  • 单机并行(AP_LOCAL):查询过程中,会利用节点的多核资源做并行计算,您在没有购买只读实例的前提下,针对AP负载的查询,往往会采样这种执行模式,一般也称之为Parallel Query模式。
  • 多机并行(MPP):您若购买了只读实例,针对AP负载的查询,可以协调只读实例上多个节点的多核做分布式多机并行加速。

为了让您可以准确知道执行模式,我们在原有EXPLAIN指令上,扩展出了EXPLAIN PHYSICAL。例如以下查询,通过指令可以查看到当前查询采样的是MPP模式,此外还可以获取到每个执行片段的并发数。


mysql> explain physical select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 or
der by cnt limit 5, 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorType: MPP |
| The Query's MaxConcurrentParallelism: 2 |
| Fragment 1 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| BKAJoin(condition="k = id", type="inner") |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k)) |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 0 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 Splits: 16 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+

工作负载和执行模式有一定的耦合关系,AP工作负载会采用多机并行计算。同样的也允许您通过HINT EXECUTOR_MODE指定执行模式。假如主实例空闲资源很多,可以考虑强制设置为单机或者多机并行模式来加速。


mysql> explain physical /+TDDL:EXECUTOR_MODE=AP_LOCAL/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                     |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: AP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| BKAJoin(condition="k = id", type="inner") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 3 dependency: [0, 1] parallelism: 1 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[2], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
| Fragment 4 dependency: [2, 3] parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| RemoteSource(sourceFragmentIds=[3], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+

在多机并行MPP执行模式的并发度是根据物理扫描行数、实例规格和计算所涉及到表的分表数来计算出来的,整体的并行度要考虑高并发场景,所以并行度的计算会偏保守,您可以通过上述EXPLAIN PHYSICAL指令查看并行度。当然也同样支持HINT MPP_PARALLELISM强制指定并行度,


/+TDDL:EXECUTOR_MODE=MPP MPP_PARALLELISM=8/select a.k, count() cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;

调度策略

假设您购买了多个只读实例并加入到集群地址中,您通过集群地址的查询SQL路由到只读实例的流量,会被均匀调度到只读实例多个节点上执行,调度会考虑各个节点的资源负载,确保各个节点的负载压力差不多。比如PolarDB-X会将只读实例延迟作为调度参考指标,避免将流量调度到延迟较大的只读实例上执行。115.png

业务如果有在线HTAP混合流量或者读写分离的需求,推荐使用集群地址。PolarDB-X内部会基于智能路由或者读写权重将部分流量转发给只读实例;业务上只有离线数据分析需求时,推荐使用只读地址,只读地址会直接访问只读实例,只读地址的流量会采用MPP加速。关于连接地址信息,请参见集群地址和只读地址

路由

智能路由

PolarDB-X优化器会基于代价分析出查询物理扫描行数、CPU、内存、IO、网络等核心资源消耗量,将请求区分为TP与AP负载。当您在集群地址上开启了智能路由,会主动识别SQL的工作负载类型来做路由,比如将识别为AP负载的流量路由给只读实例。您可以通过explain cost指令查看SQL工作负载类型的识别情况。例如以下查询,该查询涉及到物理扫描行数rowcount很小,计算资源(CPU&Memory)也消耗比较少,所以这个查询被识别为TP负载。


mysql> explain cost  select a.k, count() cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                                                                                                                           |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| TopN(sort="cnt ASC", offset=?2, fetch=?3): rowcount = 1.0, cumulative cost = value = 2.8765038E7, cpu = 37.0, memory = 64.0, io = 3.0, net = 5.75, id = 163602178 |
| Filter(condition="cnt > ?1"): rowcount = 1.0, cumulative cost = value = 2.8765026E7, cpu = 26.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602177 |
| HashAgg(group="k", cnt="COUNT()"): rowcount = 1.0, cumulative cost = value = 2.8765025E7, cpu = 25.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602171 |
| BKAJoin(condition="k = id", type="inner"): rowcount = 1.0, cumulative cost = value = 2.8765012E7, cpu = 12.0, memory = 18.0, io = 3.0, net = 5.75, id = 163602169 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 2.3755003E7, cpu = 3.0, memory = 0.0, io = 1.0, net = 4.75, id = 163602164 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)"): rowcount = 1.0, cumulative cost = value = 2.3755002E7, cpu = 2.0, memory = 0.0, io = 1.0, net = 4.75, id = 163601451 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 5003.0, cpu = 3.0, memory = 0.0, io = 1.0, net = 0.0, id = 163602167 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))"): rowcount = 1.0, cumulative cost = value = 5002.0, cpu = 2.0, memory = 0.0, io = 1.0, net = 0.0, id = 163601377 | |
| WorkloadType: TP | |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

工作负载的识别,对于HTAP路由至关重要。这里也允许您通过HINT WORKLOAD_TYPE指定工作负载。同样以上述查询为例,可以将查询负载强制指定为AP。


mysql> explain cost /+TDDL:WORKLOAD_TYPE=AP/ select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                                                                                                                           |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| TopN(sort="cnt ASC", offset=?2, fetch=?3): rowcount = 1.0, cumulative cost = value = 2.8765038E7, cpu = 37.0, memory = 64.0, io = 3.0, net = 5.75, id = 163602178 |
| Filter(condition="cnt > ?1"): rowcount = 1.0, cumulative cost = value = 2.8765026E7, cpu = 26.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602177 |
| HashAgg(group="k", cnt="COUNT()"): rowcount = 1.0, cumulative cost = value = 2.8765025E7, cpu = 25.0, memory = 47.0, io = 3.0, net = 5.75, id = 163602171 |
| BKAJoin(condition="k = id", type="inner"): rowcount = 1.0, cumulative cost = value = 2.8765012E7, cpu = 12.0, memory = 18.0, io = 3.0, net = 5.75, id = 163602169 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 2.3755003E7, cpu = 3.0, memory = 0.0, io = 1.0, net = 4.75, id = 163602164 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)"): rowcount = 1.0, cumulative cost = value = 2.3755002E7, cpu = 2.0, memory = 0.0, io = 1.0, net = 4.75, id = 163601451 |
| Gather(concurrent=true): rowcount = 1.0, cumulative cost = value = 5003.0, cpu = 3.0, memory = 0.0, io = 1.0, net = 0.0, id = 163602167 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))"): rowcount = 1.0, cumulative cost = value = 5002.0, cpu = 2.0, memory = 0.0, io = 1.0, net = 0.0, id = 163601377 | |
| WorkloadType: AP | |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

规则路由

除了基于代价的智能路由以外,我们也支持基于读写规则的路由。允许您在控制台参数管理上设置读写分离权重参数MASTER_READ_WEIGHT,默认值为100,可配置值区间[0, 100]。如果配置为Weight=60,意味着占60%的流量会继续在主实例执行,40%的剩余流量会路由到只读实例执行,如果只读实例有多个会进行自动分配。

智能路由和规则路由这两者关系是解耦的,具体关系请查看下表格。

智能路由规则 规则路由 (MASTER_READ_WEIGHT) 路由结果
开启 以代价的读写分离为主规则路由建议保持默认值为100
  • 事务和写操作流量,全部路由给主实例;
  • 识别为AP的查询流量,全部路由给只读实例;
  • 识别为TP的查询流量,按照(100-MASTER_READ_WEIGHT)路由给只读实例。
关闭 以规则的读写分离为主规则路由的可选范围:[0-100]
  • 事务和写操作流量,全部路由给主实例;
  • 识别为TP/AP的查询流量,一律按照(100-MASTER_READ_WEIGHT)路由给只读实例。

执行模式

目前PolarDB-X支持了三种执行模式:

  • 单机单线程(TP_LOCAL):查询过程中,是单线程计算,TP负载的查询涉及到的扫描行数比较少,往往会采样这种执行模式,比如基于主键的点查。
  • 单机并行(AP_LOCAL):查询过程中,会利用节点的多核资源做并行计算,您在没有购买只读实例的前提下,针对AP负载的查询,往往会采样这种执行模式,一般也称之为Parallel Query模式。
  • 多机并行(MPP):您若购买了只读实例,针对AP负载的查询,可以协调只读实例上多个节点的多核做分布式多机并行加速。

为了让您可以准确知道执行模式,我们在原有EXPLAIN指令上,扩展出了EXPLAIN PHYSICAL。例如以下查询,通过指令可以查看到当前查询采样的是MPP模式,此外还可以获取到每个执行片段的并发数。


mysql> explain physical select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 or
der by cnt limit 5, 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorType: MPP |
| The Query's MaxConcurrentParallelism: 2 |
| Fragment 1 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| BKAJoin(condition="k = id", type="inner") |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k)) |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 0 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 Splits: 16 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+

工作负载和执行模式有一定的耦合关系,AP工作负载会采用多机并行计算。同样的也允许您通过HINT EXECUTOR_MODE指定执行模式。假如主实例空闲资源很多,可以考虑强制设置为单机或者多机并行模式来加速。


mysql> explain physical /+TDDL:EXECUTOR_MODE=AP_LOCAL/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                     |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: AP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| BKAJoin(condition="k = id", type="inner") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 3 dependency: [0, 1] parallelism: 1 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[2], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
| Fragment 4 dependency: [2, 3] parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| RemoteSource(sourceFragmentIds=[3], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+

在多机并行MPP执行模式的并发度是根据物理扫描行数、实例规格和计算所涉及到表的分表数来计算出来的,整体的并行度要考虑高并发场景,所以并行度的计算会偏保守,您可以通过上述EXPLAIN PHYSICAL指令查看并行度。当然也同样支持HINT MPP_PARALLELISM强制指定并行度,


/+TDDL:EXECUTOR_MODE=MPP MPP_PARALLELISM=8/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;

调度策略

假设您购买了多个只读实例并加入到集群地址中,您通过集群地址的查询SQL路由到只读实例的流量,会被均匀调度到只读实例多个节点上执行,调度会考虑各个节点的资源负载,确保各个节点的负载压力差不多。比如PolarDB-X会将只读实例延迟作为调度参考指标,避免将流量调度到延迟较大的只读实例上执行。

相关文章
|
机器学习/深度学习 编解码 监控
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
|
弹性计算 JavaScript Java
阿里云服务器搭建部署宝塔详细流程
以下是内容的摘要: 本文主要介绍了在阿里云上创建和配置服务器环境的步骤,包括注册阿里云账号、实名认证、购买和设置服务器、域名的获取与备案、以及使用宝塔面板安装和配置环境。首先,用户需要注册阿里云账号并进行实名认证,选择合适的服务器配置。接着,购买服务器后,要准备并备案域名,以便通过友好的网址访问网站。在服务器上安装宝塔面板,可以方便地管理和配置LAMP/LNMP/Tomcat/Node.js等应用环境。完成这些步骤后,用户还需要在宝塔面板中安装MySQL、Redis等数据库,部署Java或Vue项目,并配置相关端口。最后,将前端项目打包上传至服务器,并设置站点,即可实现网站的上线。
|
存储 弹性计算 Ubuntu
阿里云云服务器实例使用教学
云服务器免费试用 阿里云云服务器网址:https://free.aliyun.com/?crowd=personal 详细步骤 访问阿里云免费试用。单击页面右上方的登录/注册按钮,并根据页面提示完成账号登录(已有阿里云账号)、账号注册(尚无阿里云账号)或实名认证(根据试用产品要求完成个人实名认证或企业实名认证)。 成功登录后,可试用人群选择个人认证,产品类别选择计算 > 云服务器 ECS,在试用卡片上单击立即试用。 在配置ECS实例信息面板,完成参数信息配置。本试用教程主要配置参数如表所示,其他参数可保持默认值。实际操作时,建议根据您的实际业务体量和需求选择。 参数 示例 操作系统 CentO
729 1
|
iOS开发 MacOS Python
完美解决 Python library not found: libpython3.10m.dylib, Python3, .Python, libpython3....
完美解决 Python library not found: libpython3.10m.dylib, Python3, .Python, libpython3....
362 0
|
人工智能 运维 供应链
悬镜云鲨SaaS三大核心能力 构筑下一代积极防御体系
悬镜首创的代码疫苗技术,核心是把安全检测和防护逻辑注入到运行时的数字化应用中,如同疫苗一般与应用融为一体,使其实现对风险的自发现和对威胁的自免疫。在0Day等未知漏洞防御、东西向流量防护、软件供应链投毒免疫等方面,拥有绝对的核心优势。
442 0
悬镜云鲨SaaS三大核心能力 构筑下一代积极防御体系
|
前端开发 JavaScript 容器
Chart.js-柱状图分析(参数分析+例图)
Chart.js-柱状图分析(参数分析+例图)
465 0
Chart.js-柱状图分析(参数分析+例图)
|
NoSQL Linux MongoDB
Linux下离线安装MongoDB
Linux下离线安装MongoDB
549 0
|
运维 Cloud Native 关系型数据库
复盘:我在真实场景下对几款主流云原生数据库进行极限性能压测的一次总结!!(建议收藏)
最近几年,云数据库市场日趋繁荣,进入百花齐放、百家争鸣的时代,头部云计算厂商相继推出了自己的数据库产品,特别是亚马逊的Aurora、阿里云的PolarDB、华为云的GaussDB等等。
1194 1
复盘:我在真实场景下对几款主流云原生数据库进行极限性能压测的一次总结!!(建议收藏)
|
Java 程序员 容器
拿捏了!阿里2023最新JDK源码深度解析小册,Github全站热榜第二
前几日闲来无事逛微信公众号时有幸看到了一位博主分享自己阅读开源框架源码的心得,看了之后也引发了我的一些深度思考。我们为什么要看源码?我们该怎么样去看源码? 其中前者那位博主描述的我觉得很全了(如下图所示),就不做过多的赘述了,我这篇主要跟大家说说怎么去看源码。