算法的时间复杂度和空间复杂度

简介: 算法的时间复杂度和空间复杂度

目录

  1. 算法效率
  2. 时间复杂度
  3. 空间复杂度

1.算法效率

1.1 如何衡量一个算法的好坏

看它的时间复杂度和空间复杂度

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算
机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计
算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

1.3 复杂度在校招中的考察

image.png

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一
个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

Func1 执行的基本操作次数

image.png

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为
O(N^2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
相关文章
|
2月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
69 6
|
4月前
|
机器学习/深度学习 算法 程序员
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
本文是作者阅读《趣学算法》后的笔记,介绍了算法复杂度的基本概念,包括时间复杂度和空间复杂度的不同阶表示,并通过具体例子展示了如何计算和理解算法的效率。
68 2
读《趣学算法》:重开算法之门,时间复杂度与空间复杂度
|
2月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
33 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
2月前
|
存储 算法
算法的时间复杂度和空间复杂度
本文详细讨论了算法的时间复杂度和空间复杂度,包括它们的概念、计算方法和常见复杂度的对比,并通过多个实例解释了如何计算算法的时间和空间复杂度。
93 0
算法的时间复杂度和空间复杂度
|
2月前
|
机器学习/深度学习 存储 算法
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
【初阶数据结构】算法效率大揭秘 | 时间与空间复杂度的深度剖析
|
3月前
|
算法 Python
震惊!Python 算法设计背后,时间复杂度与空间复杂度的惊天秘密大起底!
在 Python 算法设计中,理解并巧妙运用时间复杂度和空间复杂度的知识,是实现高效、优雅代码的必经之路。通过不断地实践和优化,我们能够在这两个因素之间找到最佳的平衡点,创造出性能卓越的程序。
40 4
|
3月前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
72 3
|
2月前
|
算法 C语言
深入理解算法效率:时间复杂度与空间复杂度
深入理解算法效率:时间复杂度与空间复杂度
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。