23种设计模式汇总概述之行为型模式

简介: 行为型模式:类和对象如何交互,及划分责任和算法。

设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。
设计模式分类:
创建型模式:对象实例化的模式,创建型模式用于解耦对象的实例化过程。
结构型模式:把类或对象结合在一起形成一个更大的结构。
行为型模式:类和对象如何交互,及划分责任和算法。
image.png

行为型模式

访问者模式(Visitor Pattern)

定义:Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates. (封装一些作用于某种数据结构中的各元素的操作,它可以在不改变数据结构的前提下定义作用于这些元素的新的操作。)
访问者模式类图:
image.png

  • Visitor——抽象访问者

抽象类或者接口,声明访问者可以访问哪些元素,具体到程序中就是visit方法的参数定义哪些对象是可以被访问的。

  • ConcreteVisitor——具体访问者

它影响访问者访问到一个类后该怎么干,要做什么事情。

  • Element——抽象元素

接口或者抽象类,声明接受哪一类访问者访问,程序上是通过accept方法中的参数来定义的。

  • ConcreteElement——具体元素

实现accept方法,通常是visitor.visit(this),基本上都形成了一种模式了。

  • ObjectStruture——结构对象

元素产生者,一般容纳在多个不同类、不同接口的容器,如List、Set、Map等,在项目中,一般很少抽象出这个角色。
使用场景

  • 一个对象结构包含很多类对象,它们有不同的接口,而你想对这些对象实施一些依赖于其具体类的操作,也就说是用迭代器模式已经不能胜任的情景。
  • 需要对一个对象结构中的对象进行很多不同并且不相关的操作,而你想避免让这些操作“污染”这些对象的类。

模板方法模式(Template Method Pattern)

定义:Define the skeleton of an algorithm in an operation,deferring some steps to subclasses.Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure.(定义一个操作中的算法的框架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。)
模板方法模式类图:
image.png
AbstractClass叫做抽象模板,它的方法分为两类:

  • 基本方法

基本方法也叫做基本操作,是由子类实现的方法,并且在模板方法被调用。

  • 模板方法

可以有一个或几个,一般是一个具体方法,也就是一个框架,实现对基本方法的调度,完成固定的逻辑。
💡注意:为了防止恶意的操作,一般模板方法都加上final关键字,不允许被覆写。
具体模板:ConcreteClass1和ConcreteClass2属于具体模板,实现父类所定义的一个或多个抽象方法,也就是父类定义的基本方法在子类中得以实现
使用场景:

  • 多个子类有公有的方法,并且逻辑基本相同时。
  • 重要、复杂的算法,可以把核心算法设计为模板方法,周边的相关细节功能则由各个子类实现。
  • 重构时,模板方法模式是一个经常使用的模式,把相同的代码抽取到父类中,然后通过钩子函数(见“模板方法模式的扩展”)约束其行为。

策略模式(Strategy Pattern)

定义:Define a family of algorithms,encapsulate each one,and make them interchangeable.(定义一组算法,将每个算法都封装起来,并且使它们之间可以互换。)
策略模式类图:
image.png

  • Context封装角色

它也叫做上下文角色,起承上启下封装作用,屏蔽高层模块对策略、算法的直接访问,封装可能存在的变化。

  • Strategy抽象策略角色

策略、算法家族的抽象,通常为接口,定义每个策略或算法必须具有的方法和属性。各位看官可能要问了,类图中的AlgorithmInterface是什么意思,嘿嘿,algorithm是“运算法则”的意思,结合起来意思就明白了吧。

  • ConcreteStrategy具体策略角色(多个)

实现抽象策略中的操作,该类含有具体的算法。
使用场景:

  • 多个类只有在算法或行为上稍有不同的场景。
  • 算法需要自由切换的场景。
  • 需要屏蔽算法规则的场景。

💡注意事项:具体策略数量超过4个,则需要考虑使用混合模式
策略模式扩展:策略枚举

public enum Calculator {
    //加法运算
    ADD("+"){
        public int exec(int a,int b){
        return a+b;
    }
    },
    //减法运算
    SUB("-"){
        public int exec(int a,int b){
        return a - b;
    }
    };
    String value = "";
    //定义成员值类型
    private Calculator(String _value){
        this.value = _value;
    }
    //获得枚举成员的值
    public String getValue(){
        return this.value;
    }
    //声明一个抽象函数
    public abstract int exec(int a,int b);
}

定义:

  • 它是一个枚举。
  • 它是一个浓缩了的策略模式的枚举。

💡注意:
受枚举类型的限制,每个枚举项都是public、final、static的,扩展性受到了一定的约束,因此在系统开发中,策略枚举一般担当不经常发生变化的角色。
致命缺陷:
所有的策略都需要暴露出去,由客户端决定使用哪一个策略。

状态模式(State Pattern)

定义:Allow an object to alter its behavior when its internal state changes.The object will appear to change its class.(当一个对象内在状态改变时允许其改变行为,这个对象看起来像改变了其类。)
状态模式类图:
image.png

  • State——抽象状态角色

接口或抽象类,负责对象状态定义,并且封装环境角色以实现状态切换。

  • ConcreteState——具体状态角色

每一个具体状态必须完成两个职责:本状态的行为管理以及趋向状态处理,通俗地说,就是本状态下要做的事情,以及本状态如何过渡到其他状态。

  • Context——环境角色

定义客户端需要的接口,并且负责具体状态的切换。
使用场景:

  • 行为随状态改变而改变的场景

这也是状态模式的根本出发点,例如权限设计,人员的状态不同即使执行相同的行为结果也会不同,在这种情况下需要考虑使用状态模式。

  • 条件、分支判断语句的替代者

💡注意:
状态模式适用于当某个对象在它的状态发生改变时,它的行为也随着发生比较大的变化,也就是说在行为受状态约束的情况下可以使用状态模式,而且使用时对象的状态最好不要超过5个。

观察者模式(Observer Pattern)

定义:Define a one-to-many dependency between objects so that when one object changes state,all its dependents are notified and updated automatically.(定义对象间一种一对多的依赖关系,使得每当一个对象改变状态,则所有依赖于它的对象都会得到通知并被自动更新。)
观察者模式类图:
image.png

  • Subject被观察者

定义被观察者必须实现的职责,它必须能够动态地增加、取消观察者。它一般是抽象类或者是实现类,仅仅完成作为被观察者必须实现的职责:管理观察者并通知观察者。

  • Observer观察者

观察者接收到消息后,即进行update(更新方法)操作,对接收到的信息进行处理。

  • ConcreteSubject具体的被观察者

定义被观察者自己的业务逻辑,同时定义对哪些事件进行通知。

  • ConcreteObserver具体的观察者

每个观察在接收到消息后的处理反应是不同,各个观察者有自己的处理逻辑。
被观察者通用代码:

public abstract class Subject {
    //定义一个观察者数组
    private Vector<Observer> obsVector = new Vector<Observer>();
    //增加一个观察者
    public void addObserver(Observer o){
        this.obsVector.add(o);
    }
    //删除一个观察者
    public void delObserver(Observer o){
        this.obsVector.remove(o);
    }
    //通知所有观察者
    public void notifyObservers(){
        for(Observer o:this.obsVector){
            o.update();
        }
    }
}

使用场景:

  • 关联行为场景。需要注意的是,关联行为是可拆分的,而不是“组合”关系。
  • 事件多级触发场景。
  • 跨系统的消息交换场景,如消息队列的处理机制。

💡注意:

  • 广播链的问题

在一个观察者模式中最多出现一个对象既是观察者也是被观察者,也就是说消息最多转发一次(传递两次)。

  • 异步处理问题

观察者比较多,而且处理时间比较长,采用异步处理来考虑线程安全和队列的问题。

备忘录模式(Memento Pattern)

定义:Without violating encapsulation,capture and externalize an object's internal state so that the object can be restored to this state later.(在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到原先保存的状态。)
备忘录模式类图:
image.png

  • Originator发起人角色

记录当前时刻的内部状态,负责定义哪些属于备份范围的状态,负责创建和恢复备忘录数据。

  • Memento备忘录角色(简单的javabean)

负责存储Originator发起人对象的内部状态,在需要的时候提供发起人需要的内部状态。

  • Caretaker备忘录管理员角色(简单的javabean)

对备忘录进行管理、保存和提供备忘录。
使用场景:

  • 需要保存和恢复数据的相关状态场景。
  • 提供一个可回滚(rollback)的操作。
  • 需要监控的副本场景中。
  • 数据库连接的事务管理就是用的备忘录模式。

注意:

  • 备忘录的生命期
  • 备忘录的性能

不要在频繁建立备份的场景中使用备忘录模式(比如一个for循环中)。
clone方式备忘录:

  • 发起人角色融合了发起人角色和备忘录角色,具有双重功效

多状态的备忘录模式

  • 增加了一个BeanUtils类,其中backupProp是把发起人的所有属性值转换到HashMap中,方便备忘录角色存储。restoreProp方法则是把HashMap中的值返回到发起人角色中。

BeanUtil工具类代码:

import java.beans.BeanInfo;
import java.beans.Introspector;
import java.beans.PropertyDescriptor;
import java.lang.reflect.Method;
import java.util.HashMap;

public class BeanUtils {
    //把bean的所有属性及数值放入到Hashmap中
    public static HashMap<String, Object> backupProp(Object bean) {
        HashMap<String, Object> result = new HashMap<String, Object>();
        try {
            //获得Bean描述
            BeanInfo beanInfo = Introspector.getBeanInfo(bean.getClass());
            //获得属性描述
            PropertyDescriptor[] descriptors = beanInfo.getPropertyDescriptors();
            //遍历所有属性
            for (PropertyDescriptor des : descriptors) {
                //属性名称
                String fieldName = des.getName();
                //读取属性的方法
                Method getter = des.getReadMethod();
                //读取属性值
                Object fieldValue = getter.invoke(bean, new Object[]{});
                if (!fieldName.equalsIgnoreCase("class")) {
                    result.put(fieldName, fieldValue);
                }
            }
        } catch (Exception e) {
        //异常处理
        }
        return result;
    }

    //把HashMap的值返回到bean中
    public static void restoreProp(Object bean, HashMap<String, Object> propMap) {
        try {
            //获得Bean描述
            BeanInfo beanInfo = Introspector.getBeanInfo(bean.getClass());
            //获得属性描述
            PropertyDescriptor[] descriptors = beanInfo.getPropertyDescriptors();
            //遍历所有属性
            for (PropertyDescriptor des : descriptors) {
                //属性名称
                String fieldName = des.getName();
                //如果有这个属性
                if (propMap.containsKey(fieldName)) {
                    //写属性的方法
                    Method setter = des.getWriteMethod();
                    setter.invoke(bean, new Object[]{propMap.get(fieldName)});
                }
            }
        } catch (Exception e) {
            //异常处理
            System.out.println("shit");
            e.printStackTrace();
        }
    }
}

多备份的备忘录:略
封装得更好一点:保证只能对发起人可读

  • 建立一个空接口IMemento——什么方法属性都没有的接口,然后在发起人Originator类中建立一个内置类(也叫做类中类)Memento实现IMemento接口,同时也实现自己的业务逻辑。

中介者模式(Mediator Pattern)

定义:Define an object that encapsulates how a set of objects interact.Mediator promotes loose coupling by keeping objects from referring to each other explicitly,and it lets you vary their interaction independently.(用一个中介对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使其耦合松散,而且可以独立地改变它们之间的交互。)
中介者模式类图:
image.png

  • Mediator 抽象中介者角色

抽象中介者角色定义统一的接口,用于各同事角色之间的通信。

  • Concrete Mediator 具体中介者角色

具体中介者角色通过协调各同事角色实现协作行为,因此它必须依赖于各个同事角色。

  • Colleague 同事角色

每一个同事角色都知道中介者角色,而且与其他的同事角色通信的时候,一定要通过中介者角色协作。每个同事类的行为分为两种:一种是同事本身的行为,比如改变对象本身的状态,处理自己的行为等,这种行为叫做自发行为(Self-Method),与其他的同事类或中介者没有任何的依赖;第二种是必须依赖中介者才能完成的行为,叫做依赖方法(Dep-Method)。
通用抽象中介者代码:

public abstract class Mediator {
    //定义同事类
    protected ConcreteColleague1 c1;
    protected ConcreteColleague2 c2;

    //通过getter/setter方法把同事类注入进来
    public ConcreteColleague1 getC1() {
        return c1;
    }

    public void setC1(ConcreteColleague1 c1) {
        this.c1 = c1;
    }

    public ConcreteColleague2 getC2() {
        return c2;
    }

    public void setC2(ConcreteColleague2 c2) {
        this.c2 = c2;
    }

    //中介者模式的业务逻辑
    public abstract void doSomething1();

    public abstract void doSomething2();
}

ps:使用同事类注入而不使用抽象注入的原因是因为抽象类中不具有每个同事类必须要完成的方法。即每个同事类中的方法各不相同。
问:为什么同事类要使用构造函数注入中介者,而中介者使用getter/setter方式注入同事类呢?
这是因为同事类必须有中介者,而中介者却可以只有部分同事类。
使用场景:
中介者模式适用于多个对象之间紧密耦合的情况,紧密耦合的标准是:在类图中出现了蜘蛛网状结构,即每个类都与其他的类有直接的联系。

迭代器模式(Iterator Pattern)

定义:Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation.(它提供一种方法访问一个容器对象中各个元素,而又不需暴露该对象的内部细节。)
迭代器模式类图:
image.png

  • Iterator抽象迭代器

抽象迭代器负责定义访问和遍历元素的接口,而且基本上是有固定的3个方法:first()获得第一个元素,next()访问下一个元素,isDone()是否已经访问到底部(Java叫做hasNext()方法)。

  • ConcreteIterator具体迭代器

具体迭代器角色要实现迭代器接口,完成容器元素的遍历。

  • Aggregate抽象容器

容器角色负责提供创建具体迭代器角色的接口,必然提供一个类似createIterator()这样的方法,在Java中一般是iterator()方法。

  • Concrete Aggregate具体容器

具体容器实现容器接口定义的方法,创建出容纳迭代器的对象。
ps:迭代器模式已经被淘汰,java中已经把迭代器运用到各个聚集类(collection)中了,使用java自带的迭代器就已经满足我们的需求了。

解释器模式(Interpreter Pattern)

定义:Given a language, define a representation for its grammar along with an interpreter that uses the representation to interpret sentences in the language.(给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子。)
解释器模式类图:
image.png

  • AbstractExpression——抽象解释器

具体的解释任务由各个实现类完成,具体的解释器分别由TerminalExpression和Non-terminalExpression完成。

  • TerminalExpression——终结符表达式

实现与文法中的元素相关联的解释操作,通常一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。具体到我们例子就是VarExpression类,表达式中的每个终结符都在栈中产生了一个VarExpression对象。

  • NonterminalExpression——非终结符表达式

文法中的每条规则对应于一个非终结表达式,具体到我们的例子就是加减法规则分别对应到AddExpression和SubExpression两个类。非终结符表达式根据逻辑的复杂程度而增加,原则上每个文法规则都对应一个非终结符表达式。

  • Context——环境角色

具体到我们的例子中是采用HashMap代替。
使用场景:

  • 重复发生的问题可以使用解释器模式
  • 一个简单语法需要解释的场景

💡注意:
尽量不要在重要的模块中使用解释器模式,否则维护会是一个很大的问题。在项目中可以使用shell、JRuby、Groovy等脚本语言来代替解释器模式,弥补Java编译型语言的不足。

命令模式(Command Pattern)

定义:Encapsulate a request as an object,thereby letting you parameterize clients with different requests,queue or log requests,and support undoable operations.(将一个请求封装成一个对象,从而让你使用不同的请求把客户端参数化,对请求排队或者记录请求日志,可以提供命令的撤销和恢复功能。)
命令模式类图:
image.png

  • Receive接收者角色

该角色就是干活的角色,命令传递到这里是应该被执行的,具体到我们上面的例子中就是Group的三个实现类(需求组,美工组,代码组)。

  • Command命令角色

需要执行的所有命令都在这里声明。

  • Invoker调用者角色

接收到命令,并执行命令。在例子中,我(项目经理)就是这个角色。
使用场景:
认为是命令的地方就可以采用命令模式,例如,在GUI开发中,一个按钮的点击是一个命令,可以采用命令模式;模拟DOS命令的时候,当然也要采用命令模式;触发-反馈机制的处理等。

责任链模式(Chain of Responsibility Pattern)

定义:Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request.Chain the receiving objects and pass the request along the chain until an object handles it.(使多个对象都有机会处理请求,从而避免了请求的发送者和接受者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有对象处理它为止。)
责任链模式类图:
image.png

  • Handler: 抽象处理者
  • ConcreteHandler: 具体处理者
  • Client: 客户类

抽象处理者的代码:

public abstract class Handler {
    private Handler nextHandler;

    //每个处理者都必须对请求做出处理
    public final Response handleMessage(Request request) {
        Response response = null;
        //判断是否是自己的处理级别
        if (this.getHandlerLevel().equals(request.getRequestLevel())) {
            response = this.echo(request);
        } else { //不属于自己的处理级别
            //判断是否有下一个处理者
            if (this.nextHandler != null) {
                response = this.nextHandler.handleMessage(request);
            } else {
            //没有适当的处理者,业务自行处理
            }
        }
        return response;
    }

    //设置下一个处理者是谁
    public void setNext(Handler _handler) {
        this.nextHandler = _handler;
    }

    //每个处理者都有一个处理级别
    protected abstract Level getHandlerLevel();

    //每个处理者都必须实现处理任务
    protected abstract Response echo(Request request);
}

抽象的处理者实现三个职责:
一是定义一个请求的处理方法handleMessage,唯一对外开放的方法;
二是定义一个链的编排方法setNext,设置下一个处理者;
三是定义了具体的请求者必须实现的两个方法:定义自己能够处理的级别getHandlerLevel和具体的处理任务echo。
💡注意事项:
链中节点数量需要控制,避免出现超长链的情况,一般的做法是在Handler中设置一个最大节点数量,在setNext方法中判断是否已经是超过其阈值,超过则不允许该链建立,避免无意识地破坏系统性能。

相关文章
|
7月前
|
设计模式 前端开发 算法
【面试题】 ES6 类聊 JavaScript 设计模式之行为型模式(二)
【面试题】 ES6 类聊 JavaScript 设计模式之行为型模式(二)
|
设计模式 算法 程序员
设计模式的概述及各个模式的功能介绍
设计模式的概述及各个模式的功能介绍
121 0
|
2月前
|
设计模式 监控 算法
Java设计模式梳理:行为型模式(策略,观察者等)
本文详细介绍了Java设计模式中的行为型模式,包括策略模式、观察者模式、责任链模式、模板方法模式和状态模式。通过具体示例代码,深入浅出地讲解了每种模式的应用场景与实现方式。例如,策略模式通过定义一系列算法让客户端在运行时选择所需算法;观察者模式则让多个观察者对象同时监听某一个主题对象,实现松耦合的消息传递机制。此外,还探讨了这些模式与实际开发中的联系,帮助读者更好地理解和应用设计模式,提升代码质量。
Java设计模式梳理:行为型模式(策略,观察者等)
|
7月前
|
设计模式 数据可视化 测试技术
设计模式概述
设计模式概述
设计模式概述
|
4月前
|
设计模式 算法 Java
【十六】设计模式~~~行为型模式~~~策略模式(Java)
文章详细介绍了策略模式(Strategy Pattern),这是一种对象行为型模式,用于定义一系列算法,将每个算法封装起来,并使它们可以相互替换。策略模式让算法独立于使用它的客户而变化,提高了系统的灵活性和可扩展性。通过电影院售票系统中不同类型用户的打折策略案例,展示了策略模式的动机、定义、结构、优点、缺点以及适用场景,并提供了Java代码实现和测试结果。
【十六】设计模式~~~行为型模式~~~策略模式(Java)
|
4月前
|
设计模式 网络协议 Java
【十五】设计模式~~~行为型模式~~~状态模式(Java)
文章详细介绍了状态模式(State Pattern),这是一种对象行为型模式,用于处理对象在其内部状态改变时的行为变化。文中通过案例分析,如银行账户状态管理和屏幕放大镜工具,展示了状态模式的应用场景和设计方法。文章阐述了状态模式的动机、定义、结构、优点、缺点以及适用情况,并提供了Java代码实现和测试结果。状态模式通过将对象的状态和行为封装在独立的状态类中,提高了系统的可扩展性和可维护性。
【十五】设计模式~~~行为型模式~~~状态模式(Java)
|
4月前
|
设计模式 存储 前端开发
【十四】设计模式~~~行为型模式~~~观察者模式(Java)
文章详细介绍了观察者模式(Observer Pattern),这是一种对象行为型模式,用于建立对象之间的一对多依赖关系。当一个对象状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。文中通过交通信号灯与汽车的案例以及多人联机对战游戏的设计方案,阐述了观察者模式的动机和应用场景。接着,文章介绍了观察者模式的结构、角色、优点、缺点以及适用情况,并通过代码示例展示了如何在Java中实现观察者模式。此外,还探讨了观察者模式在MVC架构中的应用以及Java中对观察者模式的支持。
【十四】设计模式~~~行为型模式~~~观察者模式(Java)
|
4月前
|
设计模式 前端开发 Java
【十三】设计模式~~~行为型模式~~~中介者模式(Java)
文章详细介绍了中介者模式(Mediator Pattern),这是一种对象行为型模式,用于封装一系列对象的交互,降低系统耦合度,并简化对象之间的交互关系。通过案例分析、结构图、时序图和代码示例,文章展示了中介者模式的组成部分、实现方式和应用场景,并讨论了其优点、缺点和适用情况。
【十三】设计模式~~~行为型模式~~~中介者模式(Java)
|
4月前
|
设计模式 安全 Go
[设计模式]行为型模式-观察者模式
[设计模式]行为型模式-观察者模式
|
7月前
|
设计模式 算法
设计模式 - 行为型模式_ 访问者模式Visitor Pattern
设计模式 - 行为型模式_ 访问者模式Visitor Pattern
76 1
设计模式 - 行为型模式_ 访问者模式Visitor Pattern