通义妙谈 -图像模型玩转更多可能!通义万相新升级 一个包罗万象的“应用广场”!
“买家秀”秒变“卖家秀”,AI一键更换商品模特,虚拟模特功能等你解锁🔒 “小草图”秒变“大制作”,AI涂鸦作画让你的草图“一秒”成画🖌️ “2-4图”生成“个人写真”,AI虚拟分身在线创作,在家也是巴厘岛🏖️ 阿里云的微博视频 全网征集灵魂画手,几笔生成精美大作,精美礼物等你来拿
通义妙谈-阿里云图像生成大模型通义万相,Composer算法实现绘图精准可控
通义妙谈-阿里云图像生成大模型通义万相,Composer算法实现绘图精准可控
facechain人物写真生成工业级开源
facechain人物写真应用自8月11日开源了第一版证件照生成后。目前在github(GitHub - modelscope/facechain: FaceChain is a deep-learning toolchain for generating your Digital-Twin.)上已有5.7K的star,论文链接:FaceChain: A Playground for Identity-Preserving Portrait Generation:https://arxiv.org/abs/2308.14256。
【IJCAI 2023】流感知优化之 DAMO-StreamNet 论文解读
传统视频目标检测(Video Object Detection, VOD)是离线(offline)的检测任务,即仅考虑算法的检测精度,未考虑算法的延时。流感知(Streaming Perception)任务作为VOD的一个细分方向,采用流平均精度(Streaming Average Precision, sAP)指标,衡量算法的在线(online)检测能力,即同时衡量算法的精度和延时。本文针对现有的流感知工作在训练方式和模型感受野两方面的不足,提出了DAMO-StreamNet,在保证算法实时性的前提下,实现了SOTA的性能。
ChatGPT最强专业学习资料集锦
本文旨在整理一份可供参考和学习的专业ChatGPT相关资料,包括ChatGPT相关论文、Github项目、以及当前市场上出现的ChatGPT相关产品等。
【阿里云OpenVI-人脸感知理解系列之人脸识别】基于Transformer的人脸识别新框架TransFace ICCV-2023论文深入解读
本文介绍 阿里云开放视觉智能团队 被计算机视觉顶级国际会议ICCV 2023接收的论文 "TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective"。TransFace旨在探索ViT在人脸识别任务上表现不佳的原因,并从data-centric的角度去提升ViT在人脸识别任务上的性能。
【阿里云OpenVI-视觉生产系列之图片上色】照片真实感上色算法DDColor ICCV2023论文深入解读
图像上色是老照片修复的一个关键步骤,本文介绍发表在 ICCV 2023 上的最新上色论文 DDColor
AIGC视频生成/编辑技术调研报告
随着图像生成领域的研究飞速发展,基于diffusion的生成式模型取得效果上的大突破。在图像生成/编辑产品大爆发的今天,视频生成/编辑技术也引起了学术界和产业界的高度关注。该分享主要介绍视频生成/编辑的研究现状,包括不同技术路线的优劣势,以及该领域当下面临的核心问题与挑战。
AIGC玩转卡通化技术实践
伴随着持续不断的AIGC浪潮,越来越多的AI生成玩法正在被广大爱好者定义和提出,图像卡通化(动漫化)基于其还原效果高,风格种类丰富等特点而备受青睐。早在几年前,伴随着GAN网络的兴起,卡通化就曾经风靡一时。而今,伴随着AIGC技术的兴起和不断发展,扩散生成模型为卡通化风格和提供了更多的创意和生成的可能性。本文就将详细介绍达摩院开放视觉团队的卡通化技术实践。
被低估且误解的换脸技术: 揭秘换脸技术本身的领域及行业价值
本文主要用尽量简单白话的描述来剖析下AI换脸技术的原理,做一个科普文章,了解下当前换脸技术的发展现状及其局限性。
AIGC图像分辨率太低?快来试试像素感知扩散超分模型,你想要的细节都在这里
阿里巴巴最新自研的像素感知扩散超分模型已经开源,它把扩散模型强大的生成能力和像素级控制能力相结合,能够适应从老照片修复到AIGC图像超分的各种图像增强任务和各种图像风格,并且能够控制生成强度和增强风格。这项技术的直接应用之一是AIGC图像的后处理增强和二次生成,能够带来可观的效果提升。
OpenVI-感知理解系列之GAP骨骼点动作识别 ICCV23顶会论文深入解读
本文介绍了ICCV23中稿论文 GAP: Generative Action Description Prompts for Skeleton-based Action Recognition
本地生活技术雷达——生成式AI(Generative AI)在阿里本地生活的应用与思考
本地生活技术雷达是由本地生活技术中心战略管理&PMO团队开展的,定期扫描和评估新兴技术的战略研究工作。目的是对技术趋势进行前瞻性预判,提出新技术布局建议,在技术驱动业务创新和业务增长、践行社会责任等方面有一些实质性探索。 本篇尝试探讨 1)理解AI范式——从分析型(Analytical AI)到生成式(Generative AI)的拐点在2022年,其对人类社会以及商业模式的长期影响; 2)生成式AI(文生文、文生图、图生图等)在本地业务目前场景的应用和未来的方向。 欢迎技术、产品、运营、战略、管理层、国内国际等各种视角的指点和碰撞!
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
【一步步开发AI运动小程序】六、人体骨骼图绘制
随着AI技术的发展,阿里体育等公司推出的AI运动APP如“乐动力”、“天天跳绳”等,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能,包括人体骨骼图的绘制原理及其实现代码,确保骨骼图与人体图像精准重合。下篇将继续介绍运动分析方法。
【一步步开发AI运动小程序】七、进行运动计时、计数
随着AI技术的发展,阿里体育推出的“乐动力”、“天天跳绳”等APP,使云上运动会、AI体育指导等概念备受关注。本文将引导您从零开始,利用“云智AI运动识别小程序插件”,在小程序中实现类似功能。通过插件的`sports`和`calc`命名空间,可轻松实现运动检测、计时计数等功能。示例代码展示了如何创建并使用俯卧撑运动分析器,以及如何通过摄像头捕获图像进行人体识别和运动分析。敬请期待后续关于姿态分析的内容。
在 Java 中,如何自定义`NumberFormatException`异常
在Java中,自定义`NumberFormatException`异常可以通过继承`IllegalArgumentException`类并重写其构造方法来实现。自定义异常类可以添加额外的错误信息或行为,以便更精确地处理特定的数字格式转换错误。
如何创建一个信任所有证书的`TrustManager`
`TrustManager`是Java中用于管理SSL/TLS信任关系的接口,主要用于验证服务器证书。本文介绍了如何创建一个信任所有证书的`TrustManager`,并通过示例代码展示了具体的实现步骤。虽然这种方法在测试环境中很有用,但在生产环境中使用时存在严重的安全风险。
在实际应用中,如何判断是否需要创建信任所有证书的 TrustManager
在实际应用中,判断是否需要创建信任所有证书的TrustManager时,需考虑安全性与便捷性的平衡。通常,开发和测试环境可使用信任所有证书的TrustManager,但生产环境应严格验证证书,确保通信安全。
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习(11)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊-除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习(7)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人数据结构与算法系列学习之队列的基本概念、如何判断队列已满/已空、队列的链式存储结构[头的出入队]、双端队列、中缀、后缀、前缀表达式、特殊矩阵和一二维数组的压缩储存等具体操作详解步骤;举例说明、注意点及常见报错问题所对应的解决方法 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
2024重生之回溯数据结构与算法系列学习【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构的基本概念;算法的基本概念、特性以及时间复杂度、空间复杂度等举例说明;【含常见的报错问题及其对应的解决方法】
计算机图形学-1-小试牛刀
这段代码使用 OpenGL 和 GLUT 库创建了一个简单的图形窗口,展示了多个几何形状。首先清屏并设置背景为黑色,然后绘制一个白色矩形和一个彩色大三角形。接着绘制三个不同颜色的点,并计算大三角形的中点,绘制一个小三角形。最后,再次计算小三角形的中点,绘制一个更小的三角形。通过 `glutDisplayFunc` 注册显示回调函数 `myDisplay`,并在 `glutMainLoop` 中进入事件处理循环。
拿下奇怪的前端报错(六):多摄手机webrtc拉取视频流会导致应用崩溃,从而无法进行人像扫描
本文介绍了一种解决手机摄像头切换导致应用崩溃的问题的方法。针对不支持facingMode配置的四摄手机,通过缓存和序号切换的方式,确保应用在特定设备上不会频繁崩溃,提升用户体验。
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
ijkplayer是由Bilibili基于FFmpeg3.4研发并开源的播放器,适用于Android和iOS,支持本地视频及网络流媒体播放。本文详细介绍如何在新版Android Studio中导入并使用ijkplayer库,包括Gradle版本及配置更新、导入编译好的so文件以及添加直播链接播放代码等步骤,帮助开发者顺利进行App调试与开发。更多FFmpeg开发知识可参考《FFmpeg开发实战:从零基础到短视频上线》。
微帧Per-Title编码技术:自适应码率-画质-分辨率
Per-Title编码技术由Netflix提出,旨在为每部电影量身定制合适的码率阶梯,以节省带宽和存储成本。传统固定码率阶梯在某些视频类型上存在浪费,Per-Title通过分析视频内容的复杂度,生成最优的码率-质量曲线,确保在有限带宽下提供最佳视频质量。微帧的Per-Title技术进一步优化了这一过程,通过智能算法和深度学习,为每个视频选择最合适的分辨率和码率组合,实现高效传输和优质观看体验。
FFmpeg开发笔记(五十九)Linux编译ijkplayer的Android平台so库
ijkplayer是由B站研发的移动端播放器,基于FFmpeg 3.4,支持Android和iOS。其源码托管于GitHub,截至2024年9月15日,获得了3.24万星标和0.81万分支,尽管已停止更新6年。本文档介绍了如何在Linux环境下编译ijkplayer的so库,以便在较新的开发环境中使用。首先需安装编译工具并调整/tmp分区大小,接着下载并安装Android SDK和NDK,最后下载ijkplayer源码并编译。详细步骤包括环境准备、工具安装及库编译等。更多FFmpeg开发知识可参考相关书籍。
FFmpeg开发笔记(五十八)把32位采样的MP3转换为16位的PCM音频
《FFmpeg开发实战:从零基础到短视频上线》一书中的“5.1.2 把音频流保存为PCM文件”章节介绍了将媒体文件中的音频流转换为原始PCM音频的方法。示例代码直接保存解码后的PCM数据,保留了原始音频的采样频率、声道数量和采样位数。但在实际应用中,有时需要特定规格的PCM音频。例如,某些语音识别引擎仅接受16位PCM数据,而标准MP3音频通常采用32位采样,因此需将32位MP3音频转换为16位PCM音频。
Java“操作符 ... 不能应用于 x”解决
当Java编译器报错“操作符 ... 不能应用于 x”时,通常是因为你尝试对不支持该操作符的数据类型执行了操作。解决方法包括:确保数据类型兼容、使用正确的类型转换或选择合适的方法。检查代码中的变量类型和操作符使用是否正确。
Python中Pillow库的常见用法和代码示例
Pillow是Python中广泛使用的图像处理库,支持丰富的图像操作功能,包括但不限于打开、保存、缩放、裁剪、旋转、调色等。本文通过一系列示例介绍Pillow的基本用法,涵盖图像的加载与显示、尺寸调整、裁剪与旋转、亮度调整、格式转换、滤镜应用、图像合成及像素级操作等。首先需通过`pip install pillow`安装库,随后可通过导入`PIL.Image`等模块开始图像处理任务。无论是初学者还是进阶用户,都能从Pillow提供的强大功能中获益。
阿里云视觉系统使用技巧
【10月更文挑战第3天】阿里云视觉系统基于强大的计算能力和人工智能技术,为用户提供了多种图像处理与分析的解决方案。无论是图像识别、目标检测,还是视频分析,阿里云视觉系统都能帮助开发者和企业实现自动化、高效化的图像处理任务。本文将分享一些阿里云视觉系统的实用技巧,帮助你更好地使用这款强大的工具。
FFmpeg开发笔记(五十七)使用Media3的Transformer加工视频文件
谷歌推出的Transformer,作为Jetpack Media3架构的一部分,助力开发者实现音视频格式转换与编辑。Media3简化了媒体处理流程,提升了定制性和可靠性。Transformer可用于剪辑、添加滤镜等操作,其示例代码可在指定GitHub仓库中找到。要使用Transformer,需在`build.gradle`中添加相关依赖,并按文档编写处理逻辑,最终完成音视频转换任务。具体步骤包括配置剪辑参数、设置空间效果以及监听转换事件等。
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。