深入了解大模型:探讨大型神经网络的崛起与应用
近年来,大型神经网络模型如GPT-3、BERT和T5已经引领了人工智能领域的发展潮流。这些庞大的模型参数、深层网络结构和大规模训练数据的结合,使它们成为了自然语言处理、计算机视觉和其他领域的重要工具。本文将深入探讨大型神经网络模型的崛起、技术细节和实际应用。
使用 LangChain 和 Node.js 提取数据
在本篇文章中,将分享如何使用 LangChain(一个用于构建 AI 驱动应用程序的框架)通过 GPT 和 Node.js 提取和生成结构化 JSON 数据
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE:打造分布式对话智能
达摩院智能对话技术升级-更人类,更温暖-通义对话大模型SPACE加持下的新一代对话智能-SPACE:打造分布式对话智能
多角色AI代理的一次尝试- AI代码助手
本文介绍了一个多角色AI代理系统,用于自动化代码开发过程。系统包括用户接口、需求分析、代码结构设计、代码生成、代码审查和代码执行等角色,通过协调工作实现从需求到代码生成与测试的全流程自动化。使用了qwen2.5 7b模型,展示了AI在软件开发中的潜力。
互联网时代呼唤‘新中文‘的崛起 - 谈谈象形文字在如今分词方法下面临的挑战
本文探讨了汉字在互联网和大模型时代的挑战与机遇,分析了汉字在创造新词、自然语言处理等方面的局限性,并提出了“新中文”概念,包括二维部首组合法、拼音化与语调简化等创新方法,旨在保留汉字文化精髓的同时,提升其在数字时代的适应性和处理效率。
一文详述:AI 网关与 API 网关到底有什么区别?
近年来,AI发展迅猛,大模型成为推动业务创新的关键力量。企业面临如何安全管理和部署AI应用的挑战,需设计既能满足当前需求又可适应未来发展的基础架构。AI网关应运而生,在集成、管理和优化AI应用中扮演重要角色。本文探讨AI网关与API网关的区别,分析AI系统为何需要专门网关,并提供选择合适AI网关的建议。AI网关不仅支持多种模型,还具备高级安全性和性能优化功能,有助于企业在复杂环境中灵活应用AI技术。
详解 C 标准库 - <limits.h>
`<limits.h>` 是 C 标准库中的头文件,定义了各种基本数据类型的大小限制和特性,如 `CHAR_BIT`、`CHAR_MIN`、`CHAR_MAX` 等,涵盖了整数和字符类型的极限值。它提供了关键的宏常量,帮助程序员理解变量范围,确保代码的正确性和可移植性。
Github 2024-05-13 开源项目周报 Top15
根据Github Trendings的统计,本周(2024年5月13日统计)共有15个项目上榜。根据开发语言分类,项目数量如下:TypeScript 项目最多,共5个;其次是Python项目4个;HTML项目2个;Jupyter Notebook、JavaScript、Batchfile、Java、C#、Vue 和 Svelte 各1个。这些项目涵盖了多种功能,包括激活工具、知识库、PDF处理、WebUI、开发工具、AI应用及系统优化等。
Github 2024-05-20 开源项目周报 Top15
根据Github Trendings的统计,2024年5月20日当周共有15个项目上榜。按开发语言分类,项目数量如下:Python项目5个,TypeScript项目3个,C++项目2个,Jupyter Notebook项目2个,C、Go、Rust和C#项目各1个。介绍了多个值得关注的项目,包括ChatGPT桌面应用程序、Fooocus图像生成软件、Jellyfin媒体系统等。这些项目涵盖了多种功能和技术领域,值得关注和研究。
Github 2024-06-01开源项目月报 Top20
根据Github Trendings统计,2024年6月共有20个项目上榜。按开发语言分类,项目数量如下:Python和TypeScript项目各有8项,Jupyter Notebook 3项,HTML、Java、Rust、Vue 和 Batchfile 各1项,C和Svelte也分别有1项。这些项目涵盖多种领域,从AI驱动的应用到游戏开发,反映了开源社区的多样性和创新力。
Github 2024-08-12 开源项目周报 Top14
本周Github Trendings共有14个项目上榜,按开发语言汇总如下:Python项目7个,TypeScript项目5个,C项目2个,JavaScript项目2个,Go和Batchfile项目各1个。其中亮点包括开发者职业成长指南、Windows激活工具、ComfyUI图形界面、AFFiNE知识库、易采集可视化爬虫等项目,涵盖多种实用工具和开源平台。
Github 2024-08-19 开源项目周报Top15
根据Github Trendings的统计,本周(2024年8月19日统计)共有15个项目上榜。按开发语言分类,上榜项目数量如下:Python项目最多,有7项;其次是JavaScript和TypeScript,各有3项;Dart有2项;HTML、PowerShell、Clojure和C++各1项。此外,还介绍了多个热门项目,包括Bootstrap 5、RustDesk、ComfyUI、易采集、Penpot等,涵盖了Web开发、远程桌面、自动化测试、设计工具等多个领域。
通义语音大模型评测:迈向更自然、更智能的语音交互
随着人工智能技术的迅猛发展,语音识别和自然语言处理领域不断涌现出新的模型和应用。阿里云推出的通义语音大模型,正是在这一背景下应运而生。本文将对通义语音大模型进行详细评测,探讨其技术架构、应用场景、性能表现以及未来发展前景。
前瞻2024云栖大会-创意加速器解决方案
对于未来发展的期待,通义万相(或阿里其他文生图领域智能体)若能进一步拓展其能力边界,超越传统的文生艺术图的范畴,涉足更广泛的商业与专业领域,将极大地提升其市场竞争力和应用价值。例如,结合扩展现实(Extended Reality)、虚拟现实(Virtual reality)和增强现实(Augmented Reality)技术,打造更立体全面的数字创意解决方案。
通义万相陪我做作业-小学生暑假科技作业-太空电子琴
我是一个三年级的小学生,今年暑假有一个科技作业是要做一种乐器,让宇航员可以带到太空里去使用,然后这个乐器我的想法就是把它做成一个就可以让宇航员如果遇到外星人,可以跟他进行交流,把地球上动物的声音都传播给他,通过这种声音的方式跟外星人进行交流。我做这个暑假作业用到了两个工具,一个是通义万相,另外一个就是阿里云DataV。
LLM应用实战:当图谱问答(KBQA)集成大模型(三)
本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。
LLM应用实战:当KBQA集成LLM
项目是关于一个博物馆知识图谱,上层做KBQA应用。实现要求是将传统KBQA中的部分模块,如NLU、指代消解、实体对齐等任务,完全由LLM实现,本qiang~针对该任务还是灰常感兴趣的,遂开展了项目研发工作
ChatGPT如何思考?心理学和神经科学破解AI大模型,Nature发文
【6月更文挑战第5天】Nature文章探讨了人工智能,尤其是ChatGPT这类大型语言模型(LLMs)的思考机制。随着AI复杂性的增加,理解其决策过程成为挑战。可解释AI(XAI)领域致力于揭示这些“黑盒子”的工作原理,但LLMs的规模和潜在问题(如错误信息和隐私泄露)使这一任务更具紧迫性。研究人员借助心理学和神经科学方法尝试理解模型决策,但目前仍处于早期阶段,且有争议认为模型可能只是模拟而非真正理解文本。
【平衡点:解锁中国大模型开源闭源的新时代】关于大模型是否开源的分析
本文探讨了开源与闭源软件在大模型技术发展中的角色,深入比较了两者在质量、安全、产业化、适应性和可靠性等方面的优缺点。开源软件得益于全球开发者社区,通常在创新和适应性上表现出色,但安全性和质量可能因分散的开发而有所波动。闭源软件则在代码质量和安全性上有一定优势,但可能限制了产业的协作与创新。 在商业模式方面,开源通常依赖服务和支持盈利,闭源则通过软件授权和订阅服务获利。开源模式的市场竞争更激烈,闭源模式则更注重市场份额和控制。企业需要根据自身情况选择合适的战略,有些可能会采用
详解AI作画算法原理
AI作画算法运用深度学习和生成对抗网络(GAN),通过学习大量艺术作品,模拟艺术家风格。卷积神经网络(CNN)提取图像特征,GAN中的生成器和判别器通过对抗训练生成艺术图像。循环神经网络和注意力机制可提升作品质量。这种技术开创了艺术创作新途径。
生成X-Bogus的js代码,通过python调用生成
该文本是一个关于如何解析和执行JavaScript代码的步骤说明。主要内容包括: 1. 找到JavaScript文件的位置。 2. 下载代码并进行格式化。 3. 运行代码时会出现缺少变量错误,需要添加模拟环境的代码。 4. 指出主要的入口函数是`_0x5a8f25`,将其赋值给`window`。 5. 提供了整个JavaScript代码的长串内容。 6. 提供了一个Python脚本,用于调用这个JavaScript函数并处理返回的数据。 总结:这段文本描述了如何处理和运行一个JavaScript文件,以及使用Python来与这个脚本交互的示例。
Java Stream API详解与使用
Java Stream API是Java 8引入的特性,提供函数式操作处理集合,支持链式操作和并行处理,提升代码可读性和性能。关键点包括:延迟执行的中间操作(如filter, map)和触发计算的终端操作(如collect, forEach)。示例展示了如何从Person列表过滤出年龄大于20的姓名并排序。使用Stream时注意避免中间操作的副作用,终端操作后Stream不能复用,以及并行操作的线程安全性。