大模型工程师基础之学会使用openai
本系列教程涵盖OpenAI API基础到高级应用,包括文本生成、图像处理、语音交互、会话管理、流式响应、文件输入、推理模型及性能评估等十大核心功能。适合新手入门与工程师实践,助您掌握大模型开发关键技术。从简单Prompt设计到复杂多模态任务,逐步深入,结合实例代码与最佳实践,提升实际开发能力。希望这些内容对您有帮助!

WiseMindAI:一款AI智能知识库,数据完全本地化,支持文档对话、10+种文档、10+AI大模型等
WiseMindAI 是一款由 Chris 开发的 AI 智能学习助手,支持数据完全本地化存储,确保用户隐私安全。它兼容多种文档格式(如 PDF、Markdown 等),并提供 AI 文档总结、智能笔记、沉浸式翻译、知识卡片生成等功能。此外,WiseMindAI 支持 10+ 大语言模型和自定义 AI 插件,适用于 Windows 和 Mac 平台,支持简体中文、繁体中文及英文。

搞定!微信接入DeepSeek打造聊天机器人,1行代码就行!
程序员晚枫分享了一个有趣的Python项目,将DeepSeek大模型接入微信,实现自动聊天。通过PyOfficeRobot库,仅需1行代码即可完成接入,打造AI聊天机器人。该项目基于Windows API操作微信,目前仅支持Windows系统。用户需填写好友名称和API Key,轻松体验AI对话。此外,PyOfficeRobot还支持其他大模型如阿里通义、智谱等。欢迎尝试并参与改进开源项目。
通义 CoGenAV 大模型音画同步感知,重新定义语音理解边界
CoGenAV 是一种创新的多模态语音理解模型,核心理念是实现“音画同步”的深度理解。通过学习 audio-visual-text 的时序对齐关系,构建更鲁棒、更通用的语音表征框架。它在视觉语音识别(VSR)、音视频语音识别(AVSR)、语音增强与分离(AVSE/AVSS)及主动说话人检测(ASD)等任务中表现出色,尤其在嘈杂环境下性能显著提升。仅需 223 小时数据训练即可媲美传统数千小时数据的效果,大幅降低训练成本。CoGenAV 支持主流平台如 GitHub、HuggingFace 和 ModelScope,助力多场景应用开发。
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
国家互联网信息办公室关于发布第十批深度合成服务算法备案信息的公告
2025年3月12日,国家网信办公布第十批深度合成算法备案信息,共395款算法通过公示。根据《互联网信息服务深度合成管理规定》,境内深度合成服务提供者和技术支持者需履行备案手续。具体信息可在中国互联网信息服务算法备案系统查询,疑议请发邮件至指定邮箱。附件含完整备案清单。
推理速度提升300%:LLaMA4-MoE的FlashAttention-2集成与量化部署方案
本文详解LLaMA4-MoE模型架构与实现全流程,涵盖语料预处理、MoE核心技术、模型搭建、训练优化及推理策略,并提供完整代码与技术文档,助你掌握大模型MoE技术原理与落地实践。
微医控股与阿里云达成战略合作,双方将携手基于通义千问大模型联合打造医疗全场景智能体,共同构建医疗垂类大模型
2025年6月17日,微医控股与阿里云达成战略合作,共建医疗AI基座及医疗全场景智能体。双方将基于通义千问大模型打造医疗垂类大模型,升级微医“5+1”智能体,并在诊断、用药、健康管理等环节深化应用。微医将结合阿里云技术优势推进IDC上云,助力AI+医疗基础设施建设,共同制定行业标准并推广城市级AI数字健共体。目前,微医AI服务已连接全国1.2万家医院和30万名医生,健康管理会员超100万。
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。

Google 发布其开源模型系列最新模型 Gemma 3
Google 发布了其开源模型系列的最新成员 Gemma 3,这是一款轻量级、高性能的 AI 模型,支持多语言和复杂任务。它具备 140+ 语言支持、128K-token 上下文窗口、增强的多模态分析能力以及函数调用功能,适用于聊天 AI、代码生成等多种场景。Gemma 3 在性能上超越 Llama 3-8B 和 Mistral 7B,且仅需单 GPU 即可运行,大幅降低计算成本。提供 1B 至 27B 不同参数规模版本,满足多样化需求,并优化了量化模型以适应边缘计算和移动设备。其多模态设计整合了 SigLIP 图像编码器,扩展上下文窗口至 128k token,显著提升了视觉和文本理解能力。
Qwen-coder实现本地 RAG 框架能力Bootstrap
本文介绍了如何利用Qwen-coder在本地实现RAG框架能力提升,解决了企业知识库管理中的数据安全和半结构化文档处理问题。通过Qwen2.5-72b模型和多轮对话推理,成功实现了对包含图表内容的文档的高效预处理,提升了知识库检索的准确性和安全性。
探索计算机人工智能算法
在信息科技飞速发展的今天,人工智能(AI)炙手可热。计算机AI算法作为核心,使系统能模拟乃至超越人智。本文探索AI算法原理,涵盖机器学习(监督与无监督学习)、深度学习及自然语言处理等关键技术,展示其如何通过数据分析、模式识别等实现预测、分类及理解人类语言等复杂任务,引领科技创新潮流。
通义万相AIGC技术测评报告
**摘要:** 通义万相是阿里云的AI绘画模型,提供清晰的部署指南和易用的API,适合新手。资源部署耗时约10分钟,API响应快,支持多种风格图片生成,适用于广告、媒体等领域。产品性价比高,功能包括文本到图像转换等,但仍有改进空间,如增加服装纹理选项、互动功能和更多API接口。建议完善功能、加强推广和降低成本以吸引更多用户。[链接](https://developer.aliyun.com/topic/tongyi-wanxiang?spm=a2c6h.27063436.J_6978680750.5.3a774f461hv8qD)

解密!通义智文-你的AI阅读助手!
通义智文是基于通义大模型的AI阅读助手,网页阅读、论文阅读、图书阅读和自由阅读,用AI帮你读得多、读得快、读得懂。 通过文档场景化阅读、结构化导读、给我灵感、多文档处理等亮点功能和文档智能大小模型协同的核心技术。让AI帮你更准确,更深入,更专业的读懂文档,沉淀专属知识资产。 产品已于2023年10月31日在云栖大会正式对外发布,现免费公测全面开放。
基于通义多模态大模型的实时音视频交互
Qwen-Omni是通义千问系列的全新多模态大模型,支持文本、图像、音频和视频的输入,并输出文本和音频。Omni-Realtime服务针对实时交互场景优化,提供低延迟的人机交互体验。
# Qwen3-8B 与 ChatGPT-4o Mini 的 TTFT 性能对比与底层原理详解
Qwen3-8B 是通义实验室推出的80亿参数模型,支持32K上下文,采用FP8量化和CUDA优化,提升推理效率;ChatGPT-4o Mini 为OpenAI轻量模型,参数约3.8B,支持128K上下文,通过蒸馏技术实现低延迟。两者在TTFT、长文本处理和部署优化上各有优势,适用于不同应用场景。

颠覆开发效率!国内首个微服务编排框架Juggle开源啦!
Juggle是国内首个开源的微服务编排框架,专注于解决企业微服务进程中接口重复开发、系统对接复杂等问题。它提供零代码、低代码和AI增强功能,通过可视化拖拽快速组装简单API为复杂接口,支持多协议、多语言脚本和流程多版本管理。相比国外框架如Conductor,Juggle更贴合国内需求,具备高效开发、企业级可靠性及信创适配等优势,助力企业实现敏捷创新与数字化转型。
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
Arthas redefine(加载外部的.class文件,redefine到JVM里 )
小模型也能有类o1的慢思考能力?使用CAMEL生成CoT数据、Unsloth微调Qwen2.5-1.5B模型并上传至Hugging Face
本项目利用CAMEL生成高质量的CoT数据,结合Unsloth对Qwen2.5-1.5B模型进行微调,并将结果上传至Hugging Face。通过详细步骤介绍从数据生成到模型微调的完整流程,涵盖环境配置、API密钥设置、ChatAgent配置、问答数据生成与验证、数据转换保存、模型微调及推理保存等内容。最终展示了如何优化问答系统并分享实用技巧。 [CAMEL-AI](https://github.com/camel-ai/camel) 是一个开源社区,致力于智能体扩展研究。欢迎在GitHub上关注并加入我们!

基于Qwen 2.5的世界科学智能大赛冠军方案
本方案基于通义千问模型,采用多阶段的Easy-to-Hard数据合成方法,模拟人类学习的由简单到困难的思路,逐阶段构造多样化的训练数据。数据生成阶段,训练数据的标签,引入了“Chain-of-Thought”思维链模式,生成多样化的推理路径,逐步对齐推理Scaling Law。训练阶段,采用了LoRA对通义千问32B模型在合成数据集上进行参数高效微调。推理阶段,使用了4bit低精度量化,并结合vLLM框架进行推理加速,最终达到准确性、效率和显存利用率的统一。
LangChain+通义千问+AnalyticDB向量引擎保姆级教程
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
阿里云DataWorks接入DeepSeek大模型
2025年2月18日,阿里云DataWorks正式接入DeepSeek-R1(671B)与DeepSeek-R1-Distill-Qwen-32B大模型。此举显著提升平台的数据处理、分析和治理能力,简化数据开发流程,并支持智能数据查询、自动化报告生成等应用场景,推动企业级数据治理智能化进程,助力企业实现数据驱动的创新发展。
Microsoft Edge 插件上架发布全流程指南
在前两篇文章中,我分别讲解了如何将产品上架到 Chrome Web Store 和 Firefox Add-ons。今天,我们将继续探索另一个重要的浏览器插件市场——Microsoft Edge 插件商店。如果你已经熟悉 Chrome 和 Firefox 插件的上架流程,那么这篇文章会让你更快上手 Edge 插件的发布。同时,我也会在关键环节与 Chrome 和 Firefox 进行对比,帮助你更好地理解三者的异同。
基于阿里云通义千问开发智能客服与问答系统
在企业的数字化转型过程中,智能客服系统已成为提高客户满意度和降低运营成本的重要手段。阿里云的通义千问作为一款强大的大语言模型,具有自然语言理解、对话生成、知识检索等能力,非常适合用来开发智能客服与问答系统。 通过本博客,我们将演示如何基于阿里云的通义千问模型,结合阿里云相关产品如函数计算(FC)、API网关、RDS等,搭建一个功能齐全的智能客服系统。
介绍大语言模型:langchain
**LangChain框架** 是一个开源工具,由Lang.AI开发,专为基于大语言模型(LLM)的应用程序设计。它简化了与LLM的交互,整合数据检索和功能模块,支持上下文感知和逻辑推理。框架包括**基础层**(Models、LLM、Index)、**能力层**(Chains、Memory、Tools)和**应用层**(Agent),提供模型集成、提示管理、内存系统、索引、链和代理等模块。LangChain的特点包括上下文感知、逻辑推理、预制链和组件,以及开发工具如LangSmith和LangServe。广泛应用在文档分析、聊天机器人、智能助手、代码生成、内容创作和数据科学等领域。
大语言模型在假新闻的检测
大语言模型在假新闻检测应用中发挥重要作用。通过学习大量语言数据和模式,模型可以理解文本的语义和上下文信息,判断其真实性。模型通过监督学习训练,提取特征并预测新闻真实性。结合其他技术手段和人工审核,可以提高准确性和可信度。假新闻检测的过程包括数据准备、特征提取、模型训练和实际应用。模型在谣言检测中也有类似应用。
上海徐汇区大模型备案与大模型登记奖励补贴申报指南
上海徐汇区启动大模型备案及服务登记奖励申报,最高奖励500万元。适用于已通过备案或登记的企业,申报期为2025年8月29日至9月12日。奖励政策旨在推动人工智能产业发展,申报材料包括备案/登记证明、信用代码、身份证明等。纸质与电子材料需按要求提交。
Trinity-RFT:构建智能体持续学习的自动化强化微调工厂
大型语言模型作为智能体在真实环境中持续交互学习面临诸多挑战。 Trinity-RFT 是通义实验室推出的强化微调框架,旨在实现智能体的持续进化。它通过探索、训练与经验池的解耦设计,支持多样化训练模式,提升资源利用率和学习稳定性。同时,Trinity-RFT 提供灵活的数据处理与算法模块化功能,降低应用与研究门槛,助力迈向终身学习与自主进化的智能体时代。
告别OOM!这款开源神器,如何为你精准预测AI模型显存?
在 AI 开发中,CUDA 显存不足常导致训练失败与资源浪费。Cloud Studio 推荐一款开源工具——AI 显存计算器,可精准预估模型训练与推理所需的显存,支持主流模型结构与优化器,助力开发者高效利用 GPU 资源。项目地址:github.com/st-lzh/vram-wuhrai
LiveBench放榜:Qwen3斩获全球开源冠军
最新一期LiveBench榜单显示,阿里云旗舰模型Qwen3-235B-A22B荣登全球开源模型冠军,小尺寸Qwen3-32B位列Top3。千问3在指令遵循能力上超越多个顶级闭源模型,位居全球第一。该评测由图灵奖得主Yann LeCun发起,采用动态防污染机制,确保公平性。千问3支持119种语言,具备混合推理架构与强大Agent能力,现已上线阿里云百炼平台,提供免费体验与API调用。
使用CAMEL和Unsloth进行数据生成与Qwen模型微调
本项目结合CAMEL和Unsloth,生成高质量训练数据并对Qwen 7B模型进行微调,提升其在特定内容上的理解和生成能力。我们使用CAMEL生成指令-输入-输出三元组数据,并通过Unsloth的LoRA技术加速微调过程。详细步骤包括环境准备、API密钥设置、模型加载与配置、数据生成与保存、模型训练及推理。最终,微调后的Qwen 7B模型能更好地处理CAMEL社区相关文本。 更多详情请参考: - [CAMEL GitHub](https://github.com/camel-ai/camel)
针对【图像生成 - ComfyUI】使用的深度评测
ComfyUI 是一款支持自定义工作流的图像生成工具,适用于创意设计、游戏开发和电商等多个行业。它能根据项目需求灵活调整图像生成流程,提高创意实现效率,同时具备成本效益和弹性伸缩能力,适应业务量变化。尽管如此,ComfyUI 在技术门槛和数据安全方面仍存在挑战,需注意非专业用户的学习曲线和敏感数据保护。
【AI绘画大比拼】通义万相VS文心一格:探索十种风格下的绘画生成差异!
近日,通义大模型家族的新成员——通义万相已在人工智能大会上亮相。其中,通义万相的强大的“文生图”功能,不禁让我想到了去年八月由百度依托飞桨、文心大模型的技术创新推出的“AI作画”首款产品——文心一格。 那么,在类似的Prompt下,两款产品的表现将会如何呢?今天就让我们就十种风格下二者生成图像的表现力,来看看这两款产品的差异。
MCP协议:Agent交互的未来标准化之路
本文深入解析AI Agent核心能力——工具调用的工作机制,通过构建购物助手实例,详解Agent循环、行动类设计、安全防护与架构优化,并展望MCP协议在标准化交互中的应用前景。
释放Qwen3-Coder潜力:Bolt+AnalyticDB Supabase,打造真正的生产力工具
阿里云发布Qwen3-Coder,具备卓越自主编码能力,支持超长上下文窗口与工具调用,结合Bolt与AnalyticDB Supabase,实现高效开发。
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。