一键部署 Qwen3! 0 代码,2 种方式全新体验
Qwen3 正式发布并开源 8 款混合推理模型,包括两款 MoE 模型(Qwen3-235B-A22B 和 Qwen3-30B-A3B)及六个 Dense 模型。这些模型支持 119 种语言,在代码、数学等测试中表现优异,并提供思考与非思考两种模式。依托阿里云函数计算 FC 算力,FunctionAI 平台支持模型服务和应用模板部署,适用于多种场景。用户可通过 Serverless 架构快速构建高弹性、智能化应用,显著降低开发成本,提升效率。试用链接及详细文档已提供,欢迎体验。
2025架构革命:一文深度揭秘AI四维进化(MoE/GraphRAG/智能体/HyDE)
本文深入解析大模型核心技术与实践原理,涵盖MCP、RAG、Agent、微调等关键技术,结合架构演进与实战技巧,助你构建高性能AI系统,建议点赞收藏。
从零到上线:用 Qwen3-Coder 和 MCP 打造儿童学习助手
本教程介绍如何利用Qwen3-Coder模型与VS Code插件打造儿童学习助手,涵盖AI编程、代码优化与网页部署,助你掌握真实场景开发技巧。
AI企业必看:最新结果标识合规要求及规范
随着《人工智能生成合成内容标识办法》及配套标准的发布,AI企业需快速掌握政策要求以确保合规运营。该办法明确指出,利用AI生成的内容(如文本、图片、音频、视频等)需通过显性标识(如“AI生成”字样)或隐性标识(如元数据、数字水印)进行标注。内容传播平台也需核验标识并提醒用户内容性质。此外,应用程序分发平台在审核时需确认是否提供AI生成服务及相关标识材料。对于AI企业而言,合规已成为必修课,需重点关注标识的规范性和溯源能力,以应对即将到来的监管要求。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
探索大模型部署:基于 VLLM 和 ModelScope 与 Qwen2.5 在双 32G VGPU 上的实践之旅
本文介绍了使用 `VLLM` 和 `ModelScope` 部署 `Qwen2.5` 大模型的实践过程,包括环境搭建、模型下载和在双 32G VGPU 上的成功部署,展现了高性能计算与大模型结合的强大力量。
大模型 Agent 概述
大模型Agent是基于大型预训练模型构建的智能体,具有强大的语言理解和生成能力,能完成多任务处理。其记忆功能包括短期记忆和长期记忆,支持上下文保持、知识积累、计划决策及内容创作,广泛应用于自然语言处理、问答系统、信息检索、辅助决策、教育、创意应用和客服等领域。
本地部署的qwen3-8b模型和百炼上的qwen3-8b模型效果不一致
我在使用Function Call时发现,百炼平台上的Qwen3-8B模型与本地部署的Qwen3-8B模型效果存在差异,主要体现在函数参数生成上,本地模型常出现漏参或JSON格式错误,而百炼模型表现正常。想确认百炼平台的Qwen3-8B是否为更高版本?
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
使用 Qwen 生成数据模型和进行结构化输出
本教程展示如何使用CAMEL框架和Qwen模型生成结构化数据。CAMEL是一个强大的多智能体框架,支持复杂的AI任务;Qwen由阿里云开发,具备自然语言处理等先进能力。教程涵盖安装、API密钥设置、定义Pydantic模型,并演示了通过Qwen生成JSON格式的学生信息。最后,介绍了如何利用Qwen生成多个随机学生信息的JSON格式数据。欢迎在[CAMEL GitHub](https://github.com/camel-ai/camel)上为项目点星支持。
2025年大模型发展脉络:深入分析与技术细节
本文深入剖析2025年大模型发展脉络,涵盖裸模型与手工指令工程、向量检索、文本处理与知识图谱构建、自动化提示生成、ReAct多步推理及AI Agent崛起六大模块。从技术细节到未来趋势,结合最新进展探讨核心算法、工具栈与挑战,强调模块化、自动化、多模态等关键方向,同时指出计算资源、数据质量和安全伦理等问题。适合关注大模型前沿动态的技术从业者与研究者。
Qwen2-VL微调实战:LaTex公式OCR识别任务(完整代码)
《SwanLab机器学习实战教程》推出了一项基于Qwen2-VL大语言模型的LaTeX OCR任务,通过指令微调实现多模态LLM的应用。本教程详述了环境配置、数据集准备、模型加载、SwanLab集成及微调训练等步骤,旨在帮助开发者轻松上手视觉大模型的微调实践。
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
5大实战技巧:优化RAG召回质量,避免“召回不足”灾难!
本文分享了团队在金融风控系统开发中优化RAG系统的实战经验,涵盖文档处理、召回策略与生成优化三大环节,解决召回不准、数据噪声等问题,助力构建高效精准的RAG系统。

谈谈Function Calling
Function Calling赋予大语言模型调用外部工具的能力,弥补其缺乏行动力、信息滞后等缺陷。它像“指挥家”般,理解用户意图,选择合适的工具执行操作,并将结果反馈给用户,从而连接虚拟与现实。这一机制让大语言模型如虎添翼,更好地服务于人类。
1张照片 2秒钟 一键变身3D数字人
LHM是一种基于单视角图像的端到端Transformer模型,结合SMPL-X人体模型与高斯渲染技术,可从一张照片生成可驱动的3D数字人。它采用Vision Transformer和Mae模型提取特征,并通过Body-Head Transformer融合2D与3D信息,输出具有动作能力的高精度3D人体模型。应用于动作重现、游戏角色生成及虚拟现实等领域,代码已开源并提供在线体验入口。
通义万相VACE开源!一款模型搞定多种视频编辑任务
VACE是一款多功能视频生成与编辑模型,支持文生视频、图像参考生成、局部编辑及视频扩展等任务。其核心亮点包括:多模态信息输入实现可控重绘,统一单一模型满足多任务需求,以及灵活组合单任务能力释放创意边界。技术设计上,VACE采用VCU(视频条件单元)统一输入范式,并通过多模态Token序列化和上下文适配器微调提升训练效率。开源版本提供不同分辨率选择,用户可通过GitHub、HuggingFace等平台获取资源,适用于高效灵活的视频创作场景。
通义大模型:解码中国AI的"通"与"义"
“通义”取自中国传统文化中“通晓大义”,寓意技术与人文的结合。作为阿里巴巴旗下的超大规模语言模型,通义在知识蒸馏、动态稀疏激活和文化感知模块上实现三大突破,大幅提升效率与适切性。其已在医疗、司法、文化传播等领域落地,如辅助病历处理、法律文书生成及文物解说等。测试显示,通义在中文诗歌创作、商业报告生成等方面表现优异。同时,开放的开发者生态已吸引5万+创新者。未来,通义将探索长期记忆、自我反思及多智能体协作,向AGI迈进,成为智能本质的载体。其对中文语境情感的精准把握,更是中国AI“通情达义”的典范。
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
CosyVoice 与 SenseVoice:阿里FunAudioLLM两大语音生成项目的深度评测
近年来,基于大模型的语音人工智能技术发展迅猛,为自然语音人机交互带来新的可能。通义语音大模型无疑是这一领域的佼佼者。它涵盖了语音理解与语音生成两大核心能力,可支持多种语音任务,包括多语种语音识别、语种识别、情感识别、声音事件检测以及语音合成等
超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
本文系统解析AI工程范式从Prompt Engineering到Context Engineering的演进路径,深入探讨RAG、向量数据库、上下文压缩等关键技术,并结合LangGraph与智能体系统架构,助力开发者构建高可靠AI应用。
通义大模型使用指南之通义万相
该文介绍了如何在阿里云的通义大模型平台注册账号,并详细展示了通义万相功能的使用,包括文本生成图像、相似图像生成、图像风格迁移和应用广场(虚拟模特)四个部分。用户可以通过输入文字或选择图片,生成不同风格的创意作品,并能进行点赞、不满意、生成相似图、下载原图和收藏等操作。在应用广场中,用户可以上传图片并替换模特及背景,创建个性化商品展示图。
通义大模型使用指南之通义听悟
本文介绍了阿里云通义平台的注册和使用,主要包括两个部分:注册和功能介绍。用户可以通过访问网址 <https://tongyi.aliyun.com/> 进行注册。在功能介绍中,重点讲解了通义听悟的功能,它提供实时语音转文字、音视频文件转文字、智能总结和中英互译服务。用户可以体验实时录音并标记重点、问题和代办事项,方便会议记录和整理。此外,通义听悟还支持上传音视频文件转写和播客链接转写,以及浏览器插件用于处理网页、手机和微信上的语音内容。
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
Spring Cloud Alibaba AI 入门与实践
本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个在线聊天和在线画图的 AI 应用。
通义千问API:找出两篇文章的不同
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案
大模型登记指南—全网最详细解读版,纯干货快收藏!
本文解析了大模型“备案”与“登记”的区别,适用于不同场景的申报要求,并结合实际案例讲解登记流程、材料准备及安全评估要点,帮助企业合规申报,避免因未备案/登记而违规。
大模型备案攻略—2025全网最新最详细解读版
随着AI技术的发展,大模型备案成为行业热点。本文详解备案所需具体条件与注意事项,涵盖模型功能、适用场景、研制情况、安全评估及备案材料等核心内容,帮助企业全面了解备案流程,规避合规风险,顺利推进产品上线。
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。

基于qwen2和qwenvl的自动批改作业应用!
针对作业批改中常见的问题,如低质量作业、大量简单作业耗时、需初筛异常作业等,开发了一款自动批改作业的应用。该应用通过备份作业文件、获取文档内容、利用AI生成评语,并保存关键信息与日志,简化了教师的工作流程,提高了效率。应用设计简洁,易于扩展,支持图片转文字处理,适合教育场景使用。
高级RAG优化手册:3招解决检索不准和查询模糊
本文深入解析RAG(检索增强生成)技术的核心优化方法,涵盖背景、架构与实践。RAG通过整合外部知识库,弥补大语言模型在实时性、准确性和专业性上的不足,广泛应用于企业场景。文章系统讲解RAG如何解决知识静态、生成幻觉与专业深度不足等问题,并剖析其离线索引与在线生成的闭环流程。此外,还介绍了高级优化策略,如查询重写、混合检索与结果重排序,助力突破RAG应用瓶颈。
MCP协议深度集成:生产级研究助手架构蓝图
本文详解基于LangGraph与MCP协议构建研究助手的技术方案,涵盖双服务器集成、状态化智能体设计与用户元命令控制,助你掌握生产级代理系统开发要点。
WINDOWS 环境变量设置方法
本文旨在帮助使用Windows电脑的开发者们为其设备配置环境变量,以更好地支持大模型应用的开发工作。文中详细介绍了三种配置方法:一是将环境变量设置为系统级变量;二是在命令行界面通过`SET`命令或`PowerShell`临时设置变量;三是借鉴MAC的方式,创建全局环境变量文件`.zshrc`进行配置。这些方法简单实用,便于根据实际需求选择适合的方式进行配置。