Qwen3:小而强,思深,行速
Qwen3(千问3)于北京时间4月29日凌晨发布,是Qwen系列大型语言模型的最新成员,具备全系列、开源最强、混合推理等特性。它包括两款MoE模型(Qwen3-235B-A22B和Qwen3-30B-A3B)及六个Dense模型,支持119种语言。Qwen3在代码、数学和通用能力测试中超越行业顶尖模型,如DeepSeek-R1和Grok-3。其旗舰版Qwen3-235B-A22B仅需4张H20即可本地部署,成本为DeepSeek-R1的35%。此外,Qwen3原生支持思考模式与非思考模式切换,降低复杂任务门槛,并支持MCP协议优化Agent架构。

全新开源通义千问Qwen3,它来了!
Qwen3是通义千问系列的最新模型,融合推理与非推理模式,兼具QwQ和Instruct模型能力。提供多种尺寸,包括235B-A22B、30B-A3B及六个Dense模型,大幅提升数学、代码、逻辑推理和对话能力,达到业界领先水平。旗舰模型Qwen3-235B-A22B在多场景测试中表现优异,小型模型如Qwen3-4B性能媲美大模型。用户可在阿里云百炼平台免费体验各100万Token。

【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型
本文介绍了一个基于多模态大模型的医疗图像诊断项目。项目旨在通过训练一个医疗领域的多模态大模型,提高医生处理医学图像的效率,辅助诊断和治疗。作者以家中老人的脑部CT为例,展示了如何利用MedTrinity-25M数据集训练模型,经过数据准备、环境搭建、模型训练及微调、最终验证等步骤,成功使模型能够识别CT图像并给出具体的诊断意见,与专业医生的诊断结果高度吻合。
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
阿里云百炼产品月刊【2025年9月】
本月通义千问模型大升级,新增多模态、语音、视频生成等高性能模型,支持图文理解、端到端视频生成。官网改版上线全新体验中心,推出高代码应用与智能体多模态知识融合,RAG能力增强,助力企业高效部署AI应用。
【完全免费】VS Code 最好用的 12 款 AI 代码提示插件!!!
🎉 探索12款免费VSCode AI代码提示插件:Codeium、Codegeex、CodeFuse、TONGYI Lingma、Comate、iFlyCode、Fitten Code、Bito AI、Mintlify Doc Writer、Kodezi AI、aiXcoder、IntelliCode。这些插件提供智能补全、代码生成、注释、优化,支持多种语言,提升编程效率!🚀👩💻👨💻
要不要做算法、大模型备案?看这个流程图就明白了!
本文详解算法备案、大模型备案与大模型登记的区别及适用场景,涵盖舆论属性、社会动员能力、生成式AI服务等核心概念,解析三类备案的流程、周期、材料要求及政策依据,助力企业合规开展AI服务。
Qwen3技术报告首次全公开!“混合推理模型”是这样炼成的
近日,通义千问Qwen3系列模型已开源,其技术报告也正式发布。Qwen3系列包含密集模型和混合专家(MoE)模型,参数规模从0.6B到235B不等。该模型引入了“思考模式”与“非思考模式”的动态切换机制,并采用思考预算机制优化推理性能。Qwen3支持119种语言及方言,较前代显著提升多语言能力,在多个基准测试中表现领先。此外,通过强到弱蒸馏技术,轻量级模型性能优异,且计算资源需求更低。所有Qwen3模型均采用Apache 2.0协议开源,便于社区开发与应用。
手机也能跑通义Qwen3大模型,手把手教你部署!
全球开源模型冠军Qwen3与端到端全模态模型Qwen2.5-Omni现已成功在手机上跑通!借助MNN支持,适配Android、iOS及桌面端,实现低延迟、本地化、高安全的AI体验。用户可通过自定义Sampler设置、System Prompt和Max New Tokens调节模型输出风格与长度。
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。

vLLM 架构学习指南
本指南深入解析vLLM高性能推理引擎架构,涵盖核心创新PagedAttention与连续批处理技术,结合代码结构、学习路径与实践建议,系统指导用户从入门到贡献源码的全过程。
深度解析智能体工作流(Agentic Workflows):核心概念、模式与应用
本文系统解析智能体工作流(Agentic Workflow),结合AI智能体的推理、工具与记忆能力,实现复杂任务的动态执行。内容涵盖核心概念、关键模式及实际应用,帮助读者全面理解其价值与挑战。
2025年前端框架是该选vue还是react?有了大模型-例如通义灵码辅助编码,就不用纠结了!vue用的多选react,react用的多选vue
本文比较了Vue和React两大前端框架,从状态管理、数据流、依赖注入、组件管理等方面进行了详细对比。当前版本和下载量数据显示React更为流行,但Vue在国内用户量增长迅速。Vue 3通过组合式API提供了更灵活的状态管理和组件逻辑复用,适合中小型项目;React则更适合大型项目和复杂交互逻辑。文章还给出了选型建议,强调了多框架学习的重要性,认为技术问题已不再是选型的关键,熟悉各框架的最佳实践更为重要。
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。

基于Spring AI Alibaba + Spring Boot + Ollama搭建本地AI对话机器人API
Spring AI Alibaba集成Ollama,基于Java构建本地大模型应用,支持流式对话、knife4j接口可视化,实现高隐私、免API密钥的离线AI服务。
llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
AutoGen - 架构学习指南
AutoGen 是微软开源的 AI Agent 框架,支持多智能体协作与分布式部署。本指南从架构解析、技能清单到学习路径,带你由浅入深掌握其核心原理与实战应用,助力构建可扩展的智能系统。
SpringBoot整合MQTT实战:基于EMQX实现双向设备通信
本教程指导在Ubuntu上部署EMQX 5.9.0并集成Spring Boot实现MQTT双向通信,涵盖服务器搭建、客户端配置及生产实践,助您快速构建企业级物联网消息系统。
用AI提示词搞定基金定投:技术人的理财工具实践
本文将AI提示词工程应用于基金定投,为技术人打造一套系统化、可执行的理财方案。通过结构化指令,AI可生成个性化定投策略,覆盖目标设定、资产配置、风险控制与动态调整,帮助用户降低决策门槛,规避情绪干扰,实现科学理财。

高效部署通义万相Wan2.1:ComfyUI文生/图生视频实战,工作流直取!
通义万相Wan2.1开源不到一周,已登顶HuggingFace Model 和 Space 榜双榜首,在HuggingFace和ModelScope平台的累计下载量突破100万次,社区热度持续攀升!为响应小伙伴们对ComfyUI工作流运行Wan2.1的强烈需求,社区开发者整理了实战教程👇
通过API调用通义千问时出现DataInspectionFailed的解决办法(玄学版)
在使用qwen-plus API进行长文本翻译时,遇到了DataInspectionFailed错误,提示输入数据可能包含不当内容。尽管确认文本无敏感内容,但误判依然发生。通过将每个分段的字符数从1000降低到700,问题得以解决。建议在处理长文本时,减少每次请求的字符数以避免误判。
哪里不对改哪里!全能图像编辑模型Qwen-Image-Edit来啦
Qwen-Image-Edit基于20B Qwen-Image模型,融合视觉语义与外观控制,支持中英文文字精准编辑、风格迁移、IP创作等多重功能,具备SOTA性能,助力低门槛、高精度图像编辑。
Spring Boot四层架构深度解析
本文详解Spring Boot四层架构(Controller-Service-DAO-Database)的核心思想与实战应用,涵盖职责划分、代码结构、依赖注入、事务管理及常见问题解决方案,助力构建高内聚、低耦合的企业级应用。
腾讯WeKnora 架构学习指南
《WeKnora架构学习指南》系统解析了这一腾讯开源的智能知识库项目,涵盖核心架构、技术栈、代码结构与学习路径。通过生活化类比和深度流程图解,帮助开发者从零掌握Go后端、Vue前端、RAG原理及微服务协同,提供四阶段进阶路线与实战建议,助力快速上手并参与贡献。
2025年大模型发展脉络:深入分析与技术细节
本文深入剖析2025年大模型发展脉络,涵盖裸模型与手工指令工程、向量检索、文本处理与知识图谱构建、自动化提示生成、ReAct多步推理及AI Agent崛起六大模块。从技术细节到未来趋势,结合最新进展探讨核心算法、工具栈与挑战,强调模块化、自动化、多模态等关键方向,同时指出计算资源、数据质量和安全伦理等问题。适合关注大模型前沿动态的技术从业者与研究者。

三分钟让Dify接入Ollama部署的本地大模型!
本文详细介绍了如何在 Dify 中接入 Ollama 模型,包括模型添加、参数配置及常见问题解决。通过运行 Ollama 服务并与 qwen2:0.5b 模型交互,实现本地化大模型应用开发。同时提供了 Docker、Mac、Linux 和 Windows 平台上 Ollama 的部署与环境变量设置指南,帮助开发者快速上手。更多实战技巧可访问[编程严选网](http://www.javaedge.cn/)或关注作者的 Github 仓库。
通义Qwen3-Max:大就是好
通义千问Qwen3-Max正式发布,参数超1T,训练稳定高效,在代码、推理、多语言等任务中表现卓越。预览版已登顶LMArena榜单前三,支持阿里云百炼API调用与Qwen Chat体验,敬请试用。
vllm+vllm-ascend本地部署QwQ-32B
本指南介绍如何下载、安装和启动基于Ascend的vLLM模型。首先,可通过华为镜像或Hugging Face下载预训练模型;其次,安装vllm-ascend,支持通过基础镜像(如`quay.io/ascend/vllm-ascend:v0.7.3-dev`)或源码编译方式完成;最后,使用OpenAI兼容接口启动模型,例如运行`vllm serve`命令,设置模型路径、并行规模等参数。适用于大模型推理场景,需注意显存需求(如QwQ-32B需70G以上)。
解决 VSCode 安装通义灵码后左侧菜单栏不显示按钮的问题
在 VSCode 中安装通义灵码插件后,若左侧活动栏未显示图标,可通过右键选中代码触发插件面板,并将其图标拖至左侧栏固定,便于后续快速使用。
Gemini CLI 架构学习指南
本指南深入解析开源终端AI助手Gemini CLI的架构设计,涵盖项目结构、核心流程与技术栈(TypeScript/React+Ink/Node.js),并提供从环境搭建到贡献代码的四阶段学习路径,助力开发者掌握AI编程工具开发精髓。
深度解析四大LLM微调工具:从单卡到千亿级训练的四大解决方案
本文详解大语言模型微调四大工具——Unsloth、Axolotl、LlamaFactory、DeepSpeed,覆盖从单卡实验到万亿参数分布式训练场景,助你掌握主流框架选型策略,提升微调效率。建议点赞收藏。
深入剖析 Qwen2.5 - 32B 模型在 VLLM 上的单机三卡部署与运行
本文深入探讨了Qwen2.5 - 32B模型在VLLM框架上的部署过程,从模型下载、启动命令、资源占用分析到GPU资源分配及CUDA图应用,详述了大模型运行的挑战与优化策略,强调了硬件资源规划与技术调优的重要性。
Spring Cloud Alibaba AI 入门与实践
本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个在线聊天和在线画图的 AI 应用。
别让你的大模型被忽悠了,聊聊prompt注入攻击
本文探讨了Prompt工程中的隐私与安全问题,重点分析了“奶奶漏洞”及更广泛的Prompt攻击现象,特别是Prompt注入的原理与防御手段。Prompt注入通过构造恶意输入突破模型限制,使LLM执行非预期操作。文章介绍了直接注入和间接注入类型,并提供了多种防御方案,如输入过滤、强化系统指令、接入第三方校验库及多模型协作防御。此外,还讨论了Prompt逆向工程及其正负影响,以及恶意MCP服务投毒的实际案例,如GitHub Copilot漏洞。最后提出了动态权限控制和持续安全监测等解决策略。
大模型备案、登记全流程攻略
在AI浪潮下,大模型技术迅猛发展,为各行业带来变革。为确保算法安全有序发展,需进行相关备案登记。具体包括:大模型备案(面向公众提供生成式服务)、大模型登记(借助第三方大模型)、算法备案(5类算法)及双新评估(舆论属性服务)。未及时备案将面临法律处罚,备案流程涉及属地初审、中央终审等环节,周期约3-4个月。境外模型和特定行业有额外限制,备案后仍需常态化安全管理。
通义大模型:解码中国AI的"通"与"义"
“通义”取自中国传统文化中“通晓大义”,寓意技术与人文的结合。作为阿里巴巴旗下的超大规模语言模型,通义在知识蒸馏、动态稀疏激活和文化感知模块上实现三大突破,大幅提升效率与适切性。其已在医疗、司法、文化传播等领域落地,如辅助病历处理、法律文书生成及文物解说等。测试显示,通义在中文诗歌创作、商业报告生成等方面表现优异。同时,开放的开发者生态已吸引5万+创新者。未来,通义将探索长期记忆、自我反思及多智能体协作,向AGI迈进,成为智能本质的载体。其对中文语境情感的精准把握,更是中国AI“通情达义”的典范。
大模型微调技术综述与详细案例解读
本文是一篇理论与实践结合的综述文章,综合性全面介绍大模型微调技术。本文先介绍大模型训练的两类场景:预训练和后训练,了解业界常见的模型训练方法。在后训练介绍内容中,引出模型微调(模型微调是属于后训练的一种)。然后,通过介绍业界常见的模型微调方法,以及通过模型微调实操案例的参数优化、微调过程介绍、微调日志解读,让读者对模型微调有更加直观的了解。最后,我们详细探讨数据并行训练DDP与模型并行训练MP两类模型并行训练技术,讨论在实际项目中如何选择两类并行训练技术。
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
技术人的文档阅读利器:一个AI指令,让外文资料秒变中文精华
开发者常困于外文技术文档阅读:英文论文难啃、日文博客机翻生硬、开源项目说明冗长。本文分享一个高效AI提示词,支持中英日等多语言,可自动提炼外文内容为结构化中文摘要,30秒速览核心要点,大幅提升知识获取效率。
《生成式引擎优化(GEO)服务商选择指南》:让AI大模型主动推荐你
GEO(生成式引擎优化)是针对AI生成式搜索引擎的优化策略,旨在让企业信息在AI回答中优先呈现,实现“无点击曝光”。与传统SEO不同,GEO强调语义理解、权威内容和结构化数据,提升品牌在AI推荐中的可见性与可信度。企业需关注GEO服务商的技术实力、行业匹配度、服务流程完整性等维度,确保优化效果。
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。

基于qwen2和qwenvl的自动批改作业应用!
针对作业批改中常见的问题,如低质量作业、大量简单作业耗时、需初筛异常作业等,开发了一款自动批改作业的应用。该应用通过备份作业文件、获取文档内容、利用AI生成评语,并保存关键信息与日志,简化了教师的工作流程,提高了效率。应用设计简洁,易于扩展,支持图片转文字处理,适合教育场景使用。