CSDN卜居是也
中科院高性能计算系统第二课,介绍了CUDA执行模型:核函数,线程,线程块,网格的层次结构。
中科院高性能计算系统第三课,CUDA存储器模型,介绍了寄存器、共享内存、私有内存和全局内存、常量内存、纹理内存的概念和特点。
# 0. 简介 Jetson TX2【1】是基于 NVIDIA Pascal™ 架构的 AI 单模块超级计算机,性能强大(1 TFLOPS),外形小巧,节能高效(7.5W),非常适合机器人、无人机、智能摄像机和便携医疗设备等智能终端设备。
【1】 http://www.ehrenbrav.com/2016/08/teaching-your-computer-to-play-super-mario-bros-a-fork-of-the-google-deepmind-atari-machine-learning-project/【2】 https://youtu.be/C-BY3JhXTiE
阿里云工程师卜居接受CSDN记者专访,介绍了他在深度学习领域的实践经验和成长心得,以及完成Caffe著作背后的原因和故事。 从Geoffrey Hinton 2006年的论文算起,这一波深度学习(DL)浪潮才10年,而如果只算国内,深度学习的流行也不过5年,尽管如此,深度学习现在已经扎根中国互联网,成为BAT、京东、360、今日头条等公司的基础技术和战略技术,与之伴随的,则是深度学习技术人员
Caffe是目前非常流行的深度学习框架,使用C++/CUDA编写,使用方便,性能优异,适合线上环境部署。 原生Caffe是在Linux下编译部署的。对于初学者而言,大量依赖包需要花非常大代价才能编译成功,让人望而生畏。况且在Linux下阅读代码是一件非常头疼或蛋疼的事情。 为此,研究在W
为了运行Caffe,在Fedora 17系统中安装了CUDA6.0,某天突然发现开始菜单中有NSight Eclipse Edition,于是好奇地打开看看和Visual Studio有什么区别。 打开时过场动画如下: 弹出对话框如下,我们选择默认工程位置。
同一版本的代码用了这么多次,有点过意不去,于是这次我要做较大的改动,大家要擦亮眼睛,拭目以待。 块并行相当于操作系统中多进程的情况,上节说到,CUDA有线程组(线程块)的概念,将一组线程组织到一起,共同分配一部分资源,然后内部调度执行。
多线程我们应该都不陌生,在操作系统中,进程是资源分配的基本单元,而线程是CPU时间调度的基本单元(这里假设只有1个CPU)。 将线程的概念引申到CUDA程序设计中,我们可以认为线程就是执行CUDA程序的最小单元,前面我们建立的工程代码中,有个核函数概念不知各位童鞋还记得没有,在GPU上每个线程都会运行一次该核函数。
前面三节已经对CUDA做了一个简单的介绍,这一节开始真正进入编程环节。 首先,初学者应该对自己使用的设备有较为扎实的理解和掌握,这样对后面学习并行程序优化很有帮助,了解硬件详细参数可以通过上节介绍的几本书和官方资料获得,但如果仍然觉得不够直观,那么我们可以自己动手获得这些内容。
刚入门CUDA,跑过几个官方提供的例程,看了看人家的代码,觉得并不难,但自己动手写代码时,总是不知道要先干什么,后干什么,也不知道从哪个知识点学起。这时就需要有一本能提供指导的书籍或者教程,一步步跟着做下去,直到真正掌握。
书接上回,我们既然直接运行例程成功了,接下来就是了解如何实现例程中的每个环节。当然,我们先从简单的做起,一般编程语言都会找个helloworld例子,而我们的显卡是不会说话的,只能做一些简单的加减乘除运算。
在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择。